| [1] |
|
|
Li J, Jiang X, Ma M C, Guan D W, Cao F M, Li L. Development demand and technical innovation for bio-fertilizer industry in China[J]. Soil and Fertilizer Sciences in China, 2019(2):1-5.
|
| [2] |
Kiprotich K, Muema E, Wekesa C, Ndombi T, Muoma J, Omayio D, Ochieno D, Motsi H, Mncedi S, Tarus J. Unveiling the roles,mechanisms and prospects of soil microbial communities in sustainable agriculture[J]. Discover Soil, 2025, 2(1):10.doi: 10.1007/s44378-025-00037-4.
|
| [3] |
Xie W, Ding C Q, Hu H T, Dong G J, Zhang G H, Qian Q, Ren D Y. Molecular events of rice AP2/ERF transcription factors[J]. International Journal of Molecular Sciences, 2022, 23(19):12013.doi: 10.3390/ijms231912013.
URL
|
| [4] |
|
|
Zhang R F, Shen Q R. Mechanisms of the microbial fertilizer's novel functions and the strategies to enhance its root colonization[J]. Journal of Microbiology, 2024, 44(1):1-11.
|
| [5] |
张福锁, 黄成东, 申建波, 危常州, 马文奇, 吕阳, 鲁振亚, 朱齐超, 石孝均, 侯翠红, 马航. 绿色智能肥料:矿产资源养分全量利用的创新思路与产业化途径[J]. 土壤学报, 2023, 60(5):1203-1212.doi: 10.11766/trxb202305190196.
|
|
Zhang F S, Huang C D, Shen J B, Wei C Z, Ma W Q, Lyu Y, Lu Z Y, Zhu Q C, Shi X J, Hou C H, Ma H. Green intelligent fertilizer:new insight into making full use of mineral nutrient resources and industrial approach[J]. Acta Pedologica Sinica, 2023, 60(5):1203-1212.
|
| [6] |
|
|
Yang T F, Yan J P, Hou X Y, Shen H F, Duan J Q, Ren J, Zeng H M. Inhibition of Streptomyces alfalfa TX21 and identification of biotropic substances[J]. Chinese Journal of Biological Control, 2024, 40(2):359-369.
|
| [7] |
Wang T H, Ahmad S, Yang L, Yan X N, Zhang Y F, Zhang S J, Wang L Y, Luo Y P. Preparation,biocontrol activity and growth promotion of biofertilizer containing Streptomyces aureoverticillatus HN6[J]. Frontiers in Plant Science, 2022, 13:1090689.doi: 10.3389/fpls.2022.1090689.
|
| [8] |
Hu D, Li S H, Li Y, Peng J L, Wei X Y, Ma J, Zhang C M, Jia N, Wang E T, Wang Z W. Streptomyces sp.strain TOR3209:a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community[J]. Scientific Reports, 2020,10:20132.doi: 10.1038/s41598-020-76887-5.
|
| [9] |
Ma J, Peng J L, Tian S, He Y X, Zhang C M, Jia N, Wang E T, Wang Z W, Hu D. Streptomyces sp.TOR3209 alleviates cold stress in tomato plants[J]. New Zealand Journal of Crop and Horticultural Science, 2023, 51(4):662-682.doi: 10.1080/01140671.2022.2066141.
URL
|
| [10] |
Rao Y X, Zeng L Z, Jiang H, Mei L, Wang Y J. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings[J]. BMC Microbiology, 2022, 22(1):88.doi: 10.1186/s12866-022-02511-3.
|
| [11] |
Jiang L M, Lee M H, Kim C Y, Kim S W, Kim P I, Min S R, Lee J. Plant growth promotion by two volatile organic compounds emitted from the fungus Cladosporium halotolerans NGPF1[J]. Frontiers in Plant Science, 2021, 12:794349.doi: 10.3389/fpls.2021.794349.
|
| [12] |
Joo J H, Hussein K A. Biological control and plant growth promotion properties of volatile organic compound-producing antagonistic Trichoderma spp.[J]. Frontiers in Plant Science, 2022, 13:897668.doi: 10.3389/fpls.2022.897668.
|
| [13] |
He Y X, Guo W Y, Peng J L, et al. Volatile organic compounds of Streptomyces sp.TOR3209 stimulated tobacco growth by up-regulating the expression of genes related to plant growth and development[J]. Frontiers in Microbiology, 2022, 13:891245.doi: 10.3389/fmicb.2022.891245.
|
| [14] |
Li Y C, Shao J H, Xie Y M, et a. Volatile compounds from beneficial rhizobacteria Bacillus spp.promote periodic lateral root development in Arabidopsis[J]. Plant,Cell & Environment, 2021, 44(5):1663-1678.doi: 10.1111/pce.14021.
URL
|
| [15] |
Wang K, Lin Z Y, Dou J, Jiang M G, Shen N K, Feng J. Identification and surveys of promoting plant growth VOCs from biocontrol bacteria Paenibacillus peoriae GXUN15128[J]. Microbiology Spectrum, 2023, 11(3):e04346-e04322.doi: 10.1128/spectrum.04346-22.
|
| [16] |
Macías-Rubalcava M L, Hernández-Bautista B E, Oropeza F, Duarte G, González M C, Glenn A E, Hanlin R T, Anaya A L. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis,a tropical endophytic fungus from Bursera simaruba[J]. Journal of Chemical Ecology, 2010, 36(10):1122-1131.doi: 10.1007/s10886-010-9848-5.
pmid: 20809145
|
| [17] |
Hu D, Li X Z, Chang Y L, He H, Zhang C M, Jia N, Li H T, Wang Z W. Genome sequence of Streptomyces sp.strain TOR3209,a rhizosphere microecology regulator isolated from tomato rhizosphere[J]. Journal of Bacteriology, 2012, 194(6):1627.doi: 10.1128/jb.06684-11.
URL
|
| [18] |
Janusz G, Pawlik A, S'widerska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase properties,physiological functions,and evolution[J]. International Journal of Molecular Sciences, 2020, 21(3):966.doi: 10.3390/ijms21030966.
URL
|
| [19] |
Bai Y S, Ali S, Liu S, Zhou J J, Tang Y L. Characterization of plant laccase genes and their functions[J]. Gene, 2023, 852:147060.doi: 10.1016/j.gene.2022.147060.
|
| [20] |
Ding Y J, Zhang X X, Li J L, Wang R Y, Chen J, Kong L N, Li X, Yang Z M, Zhuang L L. Transcriptome-based weighted gene co-expression network analysis reveals the photosynthesis pathway and hub genes involved in promoting tiller growth under repeated drought rewatering cycles in perennial ryegrass[J]. Plants, 2024, 13(6):854.doi: 10.3390/plants13060854.
URL
|
| [21] |
Sharma P, Gayen D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance[J]. Plant Cell Reports, 2021, 40(11):2081-2095.doi: 10.1007/s00299-021-02739-9.
|
| [22] |
Mao Y B, Xue X Y, Tao X Y, Yang C Q, Wang L J, Chen X Y. Cysteine protease enhances plant-mediated bollworm RNA interference[J]. Plant Molecular Biology, 2013, 83(1):119-129.doi: 10.1007/s11103-013-0030-7.
URL
|
| [23] |
Li Y, Wang K, Xie H, Wang D W, Xu C L, Huang X, Wu W J, Li D L. Cathepsin B cysteine proteinase is essential for the development and pathogenesis of the plant parasitic nematode Radopholus similis[J]. International Journal of Biological Sciences, 2015, 11(9):1073-1087.doi: 10.7150/ijbs.12065.
URL
|
| [24] |
pmid: 17263663
|
| [25] |
Zhang H S, Jing W, Zheng J M, Jin Y Y, Wu D, Cao C J, Dong Y M, Shi X Y, Zhang W H. The ATP-binding cassette transporter OsPDR1 regulates plant growth and pathogen resistance by affecting jasmonates biosynthesis in rice[J]. Plant Science, 2020, 298:110582.doi: 10.1016/j.plantsci.2020.110582.
|
| [26] |
Ortiz A, Sansinenea E. Phenylpropanoid derivatives and their role in plants' health and as antimicrobials[J]. Current Microbiology, 2023, 80(12):380.doi: 10.1007/s00284-023-03502-x.
pmid: 37864088
|
| [27] |
Liu Y M, Cao L, Wu X, Wang S, Zhang P M, Li M L, Jiang J H, Ding X D, Cao X Y. Functional characterization of wild soybean( Glycine soja)GsSnRK1.1 protein kinase in plant resistance to abiotic stresses[J]. Journal of Plant Physiology, 2023, 280:153881.doi: 10.1016/j.jplph.2022.153881.
|
| [28] |
Jia H T, Li M F, Li W Y, et al. A serine/threonine protein kinase encoding gene kernel number per row6 regulates maize grain yield[J]. Nature Communications, 2020,11:988.doi: 10.1038/s41467-020-14746-7.
|
| [29] |
Huang X X, Zhao S M, Zhang Y Y, Li Y J, Shen H N, Li X G, Hou B K. A novel UDP-glycosyltransferase 91C1 confers specific herbicide resistance through detoxification reaction in Arabidopsis[J]. Plant Physiology and Biochemistry, 2021, 159:226-233.doi: 10.1016/j.plaphy.2020.12.026.
URL
|
| [30] |
Dong N Q, Lin H X. Contribution of phenylpropanoid metabolism to plant development and plant environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1):180-209.doi: 10.1111/jipb.13054.
URL
|
| [31] |
Zakrzewska-Placzek M, Golisz-Mocydlarz A, Krzyszton M, Piotrowska J, Lichocka M, Kufel J. The nucleolar protein NOL12 is required for processing of large ribosomal subunit rRNA precursors in Arabidopsis[J]. BMC Plant Biology, 2023, 23(1):538.doi: 10.1186/s12870-023-04561-9.
pmid: 37919659
|
| [32] |
Manna M, Rengasamy B, Sinha A K. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement[J]. Plant,Cell & Environment, 2023, 46(8):2277-2295.doi: 10.1111/pce.14606.
URL
|
| [33] |
Zuo Z F, Lee H Y, Kang H G. Basic helix-loop-helix transcription factors:regulators for plant growth development and abiotic stress responses[J]. International Journal of Molecular Sciences, 2023, 24(2):1419.doi: 10.3390/ijms24021419.
URL
|
| [34] |
|
|
Jia Y T. Functional study of Arabidopsis transcription factor bHLH146[D]. Changchun: Jilin University, 2022.
|
| [35] |
|
|
Guo X J. The PGS1 basic helix-loop-helix(bHLH)protein regulates Fl3 to impact seed growth and grain yield in cereals[D]. Yaan: Sichuan Agricultural University, 2022.
|
| [36] |
Wang Y J, Zhou H Y, He Y R, Shen X P, Lin S E, Huang L. MYB transcription factors and their roles in the male reproductive development of flowering plants[J]. Plant Science, 2023, 335:111811.doi: 10.1016/j.plantsci.2023.111811.
|
| [37] |
Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors:their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7):15811-15851.doi: 10.3390/ijms160715811.
pmid: 26184177
|
| [38] |
Li C X, Yu W J, Xu J R, Lu X F, Liu Y Z. Anthocyanin biosynthesis induced by MYB transcription factors in plants[J]. International Journal of Molecular Sciences, 2022, 23(19):11701.doi: 10.3390/ijms231911701.
URL
|
| [39] |
Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. The Plant Journal, 2011, 66(1):94-116.doi: 10.1111/j.1365-313x.2010.04459.x.
|
| [40] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2):411-432.doi: 10.1104/pp.105.073783.
URL
|