| [1] |
Gao X G, Wang Z Y, Miao J, Xie L, Dai Y, Li X M, Chen Y, Luo H L, Dai R T. Influence of different production strategies on the stability of color,oxygen consumption and metmyoglobin reducing activity of meat from Ningxia Tan sheep[J]. Meat Science, 2014, 96(2):769-774.doi: 10.1016/j.meatsci.2013.09.026.
URL
|
| [2] |
Zhang C, Zhang H, Liu M, Zhao X G, Luo H L. Effect of breed on the volatile compound precursors and odor profile attributes of lamb meat[J]. Foods, 2020, 9(9):1178.doi: 10.3390/foods9091178.
URL
|
| [3] |
EEr H, Ma L N, Xie X L, Ma J F, Ma X M, Yue C J, Ma Q, Liang X J, Ding W, Li Y K. Genetic polymorphism association analysis of SNPs on the species conservation genes of Tan sheep and Hu sheep[J]. Tropical Animal Health and Production, 2020, 52(3):915-926.doi: 10.1007/s11250-019-02063-1.
pmid: 32026291
|
| [4] |
Cloete S W P, Snyman M A, Herselman M J. Productive performance of dorper sheep[J]. Small Ruminant Research, 2000, 36(2):119-135.doi: 10.1016/S0921-4488(99)00156-X.
pmid: 10760448
|
| [5] |
Ma Y, Zheng Z, Zhang L G, Dou Y J, Bai U, Liu X, Zhang X R, Su X H, Zhang L. Effects study of early weaning time on the growth and development of dairy sheep lamb[J]. International Journal of Food Science and Agriculture, 2021, 5(3):411-420.doi: 10.26855/ijfsa.2021.09.011.
URL
|
| [6] |
|
|
Xu H W. Research on phenotypic determination of fat deposition traits and screening of associated genes in three kinds of tail fat sheep[D]. Lanzhou: Gansu Agricultural University,2019.
|
| [7] |
Jathar S, Kumar V, Srivastava J, Tripathi V. Technological developments in lncRNA biology[J]. Advances in Experimental Medicine and Biology, 2017,1008:283-323.doi: 10.1007/978-981-10-5203-3_10.
|
| [8] |
|
|
Sun H R, Li X H. Identification of Sheep hair follicles development-related lncRNAs based on RNA-seq technology[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1):211-218.
doi: 10.7668/hbnxb.20194552
|
| [9] |
Xiao C, Wei T, Liu L X, Liu J Q, Wang C X, Yuan Z Y, Ma H H, Jin H G, Zhang L C, Cao Y. Whole-transcriptome analysis of preadipocyte and adipocyte and construction of regulatory networks to investigate lipid metabolism in sheep[J]. Frontiers in Genetics, 2021,12:662143.doi: 10.3389/fgene.2021.662143.
|
| [10] |
Wang Z G, Luo Z C, Dai Z, Zhong Y T, Liu X G, Zuo C Q. Long non-coding RNA lnc-OAD is required for adipocyte differentiation in 3T3-L1 preadipocytes[J]. Biochemical and Biophysical Research Communications, 2019, 511(4):753-758.doi: 10.1016/j.bbrc.2019.02.133.
pmid: 30833079
|
| [11] |
Yuan Z H, Ge L, Sun J Y, Zhang W B, Wang S H, Cao X K, Sun W. Integrative analysis of Iso-Seq and RNA-seq data reveals transcriptome complexity and differentially expressed transcripts in sheep tail fat[J]. PeerJ, 2021,9:e12454.doi: 10.7717/peerj.12454.
|
| [12] |
Ma L, Zhang M, Jin Y Y, Erdenee S, Hu L Y, Chen H, Cai Y, Lan X Y. Comparative transcriptome profiling of mRNA and lncRNA related to tail adipose tissues of sheep[J]. Frontiers in Genetics, 2018,9:365.doi: 10.3389/fgene.2018.00365.
|
| [13] |
Han F H, Li J, Zhao R R, Liu L R, Li L L, Li Q, He J N, Liu N. Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep[J]. BMC Genomics, 2021, 22(1):98.doi: 10.1186/s12864-021-07385-9.
pmid: 33526009
|
| [14] |
Liu T Y, Feng H, Yousuf S, Xie L L, Miao X Y. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in Duolang and Small Tail Han sheep[J]. Scientific Reports, 2022,12:11157.doi: 10.1038/s41598-022-15318-z.
|
| [15] |
|
|
Liu Y, Li W Y, Wu X F, Huang Q L, Gao C F, Chen X Z, Zhang X P. Transcriptome analysis of differentially gene expression associated with longissimus Doris tissue in Fuqing goat and Nubian black goat[J]. Scientia Agricultura Sinica, 2019, 52(14):2525-2537.
|
| [16] |
|
|
Wang Y Y, Yang J X, Xu J F, Cheng W W, He M C, Wang K, Gao D W, Xie W Z. Transcriptome analysis of longissimus dorsi muscle of Taohu F1 and Sahu F1 lambs[J]. Feed Research, 2022, 45(11):56-60.
|
| [17] |
Arora R, Naveen Kumar S, Sudarshan S, Fairoze M N, Kaur M, Sharma A, Girdhar Y, Sreesujatha R M, Devatkal S K, Ahlawat S, Vijh R K, Manjunatha S S. Transcriptome profiling of longissimus thoracis muscles identifies highly connected differentially expressed genes in meat type sheep of India[J]. PLoS One, 2019, 14(6):e0217461.doi: 10.1371/journal.pone.0217461.
URL
|
| [18] |
Noce A. Analyzing the genetic variation of dairy Sarda and Spanish meat ovine breeds[D]. Italy: University of Sassari, 2016.
|
| [19] |
Shamsi F, Xue R D, Huang T L, et al. FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis[J]. Nature Communications, 2020,11:1421.doi: 10.1038/s41467-020-15055-9.
|
| [20] |
|
|
Huang K. Regulation of FGF9 on the differentiation of goat intramuscular adipocytes[D]. Chengdu: Southwest University for Nationalities,2020.
|
| [21] |
Onzima R B, Upadhyay M R, Doekes H P, Brito L F, Bosse M, Kanis E, Groenen M A M, Crooijmans R P M A. Genome-wide characterization of selection signatures and runs of homozygosity in Ugandan goat breeds[J]. Frontiers in Genetics, 2018,9:318.doi: 10.3389/fgene.2018.00318.
|
| [22] |
|
|
Bao R K. Lycopene antagonizes DEHP induced hepatotoxicity by regulating lipid metabolism[D].Harbin: Northeast Agricultural University,2021.
|
| [23] |
Yang Y Y, Han L, Yu Q L, Gao Y F, Song R D. Study of the AMP-activated protein kinase role in energy metabolism changes during the postmortem aging of yak longissimus dorsal[J]. Animals, 2020, 10(3):427.doi: 10.3390/ani10030427.
URL
|
| [24] |
Kong D L, Cui J J, Fu J C. DbcAMP regulates adipogenesis in sheep inguinal preadipocytes[J]. Lipids in Health and Disease, 2017, 16(1):93.doi: 10.1186/s12944-017-0478-6.
pmid: 28526050
|
| [25] |
Ravnskjaer K, Madiraju A, Montminy M. Role of the cAMP pathway in glucose and lipid metabolism[M]// Metabolic Control.Cham: Spinger International Publishing,2015:29-49.doi: 10.1007/164_2015_32.
|
| [26] |
Moon Y, Tong T, Kang W, Park T. Filbertone ameliorates adiposity in mice fed a high-fat diet via activation of cAMP signaling[J]. Nutrients, 2019, 11(8):1749.doi: 10.3390/nu11081749.
URL
|
| [27] |
|
|
Liang P, Zhang W, Feng D Z, Qiang H, Rong X, Meng K. Screening candidate genes related to meat quality traits in sheep based on transcriptome[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(4):220-231.
doi: 10.7668/hbnxb.20192944
|
| [28] |
Lee H L, Qadir A S, Park H J, Chung E, Lee Y S, Woo K M, Ryoo H M, Kim H J, Baek J H. cAMP/protein kinase A signaling inhibits Dlx5 expression via activation of CREB and subsequent C/EBPβ induction in 3T3-L1 preadipocytes[J]. International Journal of Molecular Sciences, 2018, 19(10):3161.doi: 10.3390/ijms19103161.
URL
|
| [29] |
|
|
Liang H, Li M, Dong X Y, Li H, Du Z Q. Identification of RNA editing sites in chicken lines divergently selected for abdominal fat content[J]. Acta Veterinaria et Zoo technica Sinica, 2017, 48(9):1611-1623.
|
| [30] |
|
|
Jin Y. The study on the mechanism of glutathione-S-transferase M2 regulating the content of lipid droplets content in cells[D]. Wuhan: Huazhong Agricultural University,2021.
|
| [31] |
|
|
Hu K Z. Whole transcriptome sequencing analysis of dairy goats injected with 5-HTP and function verification of ATF3 gene in goat mammary epithelial cells[D]. Yangling: Northwest A&F University, 2020.
|
| [32] |
宋昀静, 田彦梅, 孟科, 尤科梅, 冯登侦. 不同性别滩羊背最长肌中肌肉发育相关LncRNA的筛选及分析[J]. 华北农学报, 2024, 39(1):219-227.doi: 10.7668/hbnxb.20194341.
|
|
Song Y J, Tian Y M, Meng K, You K M, Feng D Z. Screening and analysis of LncRNA related to muscle development in longissimus dorsi muscle of different sex Tan sheep[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1):219-227.
doi: 10.7668/hbnxb.20194341
|
| [33] |
Avruch J. Insulin signal transduction through protein kinase cascades[J]. Molecular and Cellular Biochemistry, 1998, 182(1/2):31-48.doi: 10.1023/A:100682310945.
|
| [34] |
Brozinick J T Jr, Birnbaum M J. Insulin,but not contraction,activates Akt/PKB in isolated rat skeletal muscle[J]. The Journal of Biological Chemistry, 1998, 273(24):14679-14682.doi: 10.1074/jbc.273.24.14679.
URL
|
| [35] |
pmid: 11983159
|
| [36] |
Lee J H, Woo K J, Kim M A, Hong J, Kim J, Kim S H, Han K I, Iwasa M, Kim T J. Heat-killed Enterococcus faecalis prevents adipogenesis and high fat diet-induced obesity by inhibition of lipid accumulation through inhibiting C/EBP-α and PPAR-γ in the insulin signaling pathway[J]. Nutrients, 2022, 14(6):1308.doi: 10.3390/nu14061308.
URL
|
| [37] |
Yan X, Huang Y, Zhao J X, Long N M, Uthlaut A B, Zhu M J, Ford S P, Nathanielsz P W, Du M. Maternal obesity-impaired insulin signaling in sheep and induced lipid accumulation and fibrosis in skeletal muscle of offspring[J]. Biology of Reproduction, 2011, 85(1):172-178.doi: 10.1095/biolreprod.110.089649.
pmid: 21349823
|
| [38] |
|
|
Cui X, Li C P, Zhang H Y, Liu X Y, Zhou G L. Study on function of PPP1R3C gene during differentiation of 3T3-L1 preadipocytes[J]. Journal of Liaocheng University(Natural Science Edition), 2021, 34(4):95-102.
|
| [39] |
Zhang Y X, Gu J, Wang L, Zhao Z L, Pan Y, Chen Y. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity[J]. Molecular and Cellular Endocrinology, 2017, 439:133-140.doi: 10.1016/j.mce.2016.10.036.
pmid: 27815211
|
| [40] |
Yang C Y, Wang Z X, Song Q Q, Dong B Q, Bi Y L, Bai H, Jiang Y, Chang G B, Chen G H. Transcriptome sequencing to identify important genes and lncRNAs regulating abdominal fat deposition in ducks[J]. Animals, 2022, 12(10):1256.doi: 10.3390/ani12101256.
URL
|
| [41] |
Ma M T, Cai B L, Kong S F, Zhou Z, Zhang J, Zhang X Q, Nie Q H. PPARGC1A is a moderator of skeletal muscle development regulated by miR-193b-3p[J]. International Journal of Molecular Sciences, 2022, 23(17):9575.doi: 10.3390/ijms23179575.
URL
|
| [42] |
Ramayo-Caldas Y, Fortes M R S, Hudson N J, et al. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G,and FOXP3 in intramuscular fat deposition of beef cattle[J]. Journal of Animal Science, 2014, 92(7):2832-2845.doi: 10.2527/jas.2013-7484.
pmid: 24778332
|
| [43] |
Moreira G C M, Godoy T F, Boschiero C, et al. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens[J]. Animal Genetics, 2015, 46(2):141-147.doi: 10.1111/age.12263.
pmid: 25643900
|