| [1] |
Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean[J]. Theoretical and Applied Genetics, 2005, 111(5):851-861.doi: 10.1007/s00122-005-0007-2.
pmid: 16059730
|
| [2] |
Wang D, Liu J L, Li C G, Kang H X, Wang Y, Tan X Q, Liu M H, Deng Y F, Wang Z L, Liu Y, Zhang D Y, Xiao Y H, Wang G L. Genome-wide association mapping of cold tolerance genes at the seedling stage in rice[J]. Rice, 2016, 9(1):61.doi: 10.1186/s12284-016-0133-2.
pmid: 27848161
|
| [3] |
Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo T A, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim J M, Kobayashi N, Toyoda T, Shinozaki K, Seki M. Arabidopsis transcriptome analysis under drought,cold,high-salinity and ABA treatment conditions using a tiling array[J]. Plant and Cell Physiology, 2008, 49(8):1135-1149.doi: 10.1093/pcp/pcn101.
URL
|
| [4] |
Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression[J]. The Plant Journal, 2015, 81(3):505-518.doi: 10.1111/tpj.12746.
pmid: 25495120
|
| [5] |
|
|
Zhang X F, Qiao Y K, Wang B B, Xu Y, Zhang K, Li G L. Sequence analysis of ABC transporter transcriptome in wild soybean under the drought stress[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(8):1474-1482.
doi: 10.11869/j.issn.100-8551.2019.08.1474
|
| [6] |
Zeng A L, Chen P Y, Korth K L, Ping J Q, Thomas J, Wu C J, Srivastava S, Pereira A, Hancock F, Brye K, Ma J X. RNA sequencing analysis of salt tolerance in soybean ( Glycine max)[J]. Genomics, 2019, 111(4):629-635.doi: 10.1016/j.ygeno.2018.03.020.
pmid: 29626511
|
| [7] |
Yu T F, Liu Y, Fu J D, Ma J, Fang Z W, Chen J, Zheng L, Lu Z W, Zhou Y B, Chen M, Xu Z S, Ma Y Z. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance[J]. Plant Biotechnology Journal, 2021, 19(12):2589-2605.doi: 10.1111/pbi.13684.
URL
|
| [8] |
|
|
Yu X F. Transcriptome-based mining of drought-tolerant genes in soybean(Glycine max)[D].Harbin:Northeast Agricultural University, 2025.
|
| [9] |
Zhou X Y, Tian Y M, Qu Z P, Wang J X, Han D Z, Dong S K. Comparing the salt tolerance of different spring soybean varieties at the germination stage[J]. Plants, 2023, 12(15):2789.doi: 10.3390/plants12152789.
URL
|
| [10] |
Wang R, Zhou Z Z, Xiong M Y, Du M Y, Lin X X, Liu C P, Lu M W, Liu Z B, Chang Y P, Liu E B. Mining salt tolerance SNP loci and prediction of candidate genes in the rice bud stage by genome-wide association analysis[J]. Plants, 2023, 12(11):2163.doi: 10.3390/plants12112163.
|
| [11] |
Kulkarni M G, Street R A, Van Staden J. Germination and seedling growth requirements for propagation of Dioscorea dregeana (Kunth) Dur.and Schinz—a tuberous medicinal plant[J]. South African Journal of Botany, 2007, 73(1):131-137.doi: 10.1016/j.sajb.2006.09.002.
URL
|
| [12] |
Talská R, Machalová J, Smýkal P, Hron K. A comparison of seed germination coefficients using functional regression[J]. Applications in Plant Sciences, 2020, 8(8):e11366.doi: 10.1002/aps3.11366.
URL
|
| [13] |
Ju C Y, Ma X D, Han B, Zhang W, Zhao Z W, Geng L Y, Cui D, Han L Z. Candidate gene discovery for salt tolerance in rice ( Oryza sativa L.) at the germination stage based on genome-wide association study[J]. Frontiers in Plant Science, 2022,13:1010654.doi: 10.3389/fpls.2022.1010654.
|
| [14] |
Kim D, Langmead B, Salzberg S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4):357-360.doi: 10.1038/nmeth.3317.
|
| [15] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3):290-295.doi: 10.1038/nbt.3122.
pmid: 25690850
|
| [16] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5):511-515.doi: 10.1038/nbt.1621.
pmid: 20436464
|
| [17] |
Robinson M D, McCarthy D J, Smyth G K. edgeR:a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140.doi: 10.1093/bioinformatics/btp616.
pmid: 19910308
|
| [18] |
Tsegaw M, Zegeye W A, Jiang B J, Sun S, Yuan S, Han T F, Wu T T. Progress and prospects of the molecular basis of soybean cold tolerance[J]. Plants, 2023, 12(3):459.doi: 10.3390/plants12030459.
URL
|
| [19] |
Theocharis A, Clément C, Barka E A. Physiological and molecular changes in plants grown at low temperatures[J]. Planta, 2012, 235(6):1091-1105.doi: 10.1007/s00425-012-1641-y.
pmid: 22526498
|
| [20] |
|
|
Wang F, Wang Q, Zhao X Y. Research progress of phenotype and physiological response mechanism of plants under low temperature stress[J]. Molecular Plant Breeding, 2019, 17(15):5144-5153.
|
| [21] |
Cheng Z H, Zhang X M, Yao W J, Zhao K, Liu L, Fan G F, Zhou B R, Jiang T B. Genome-wide search and structural and functional analyses for late embryogenesis-abundant (LEA) gene family in poplar[J]. BMC Plant Biology, 2021, 21(1):110.doi: 10.1186/s12870-021-02872-3.
pmid: 33627082
|
| [22] |
Lim C W, Lim S, Baek W, Lee S C. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling,drought and salt stress response[J]. Physiologia Plantarum, 2015, 154(4):526-542.doi: 10.1111/ppl.12298.
URL
|
| [23] |
Jia F J, Qi S D, Li H, Liu P, Li P C, Wu C G, Zheng C C, Huang J G. Overexpression of late embryogenesis abundant 14 enhances Arabidopsis salt stress tolerance[J]. Biochemical and Biophysical Research Communications, 2014, 454(4):505-511.doi: 10.1016/j.bbrc.2014.10.136.
URL
|
| [24] |
Xiao S M, Jiang L, Wang C H, Ow D W. Arabidopsis OXS3 family proteins repress ABA signaling through interactions with AFP1 in the regulation of ABI4 expression[J]. Journal of Experimental Botany, 2021, 72(15):5721-5734.doi: 10.1093/jxb/erab237.
URL
|
| [25] |
Binder B M, Walker J M, Gagne J M, Emborg T J, Hemmann G, Bleecker A B, Vierstra R D. The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling[J]. The Plant Cell, 2007, 19(2):509-523.doi: 10.1105/tpc.106.048140.
URL
|
| [26] |
Hasanuzzaman M, Nahar K, Anee T I, Fujita M. Glutathione in plants:biosynthesis and physiological role in environmental stress tolerance[J]. Physiology and Molecular Biology of Plants, 2017, 23(2):249-268.doi: 10.1007/s12298-017-0422-2.
pmid: 28461715
|
| [27] |
|
|
Wang X M, Zhao M L, Shao D K, Ga S, Ren Y J. Cloning and expression analysis of MYB62 transcription factors from kohlrabi[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(2): 62-70.
|
| [28] |
Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M. OsMYB4 expression improves adaptive responses to drought and cold stress in transgenic apples[J]. Plant Cell Reports, 2008, 27(10):1677-1686.doi: 10.1007/s00299-008-0587-9.
pmid: 18679687
|
| [29] |
Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors:their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7):15811-15851.doi: 10.3390/ijms160715811.
pmid: 26184177
|
| [30] |
黄鹭, 黄颜众, 轩慧冬, 马玲, 郭娜, 赵晋铭, 邢邯. 大豆 GmMYB46基因的克隆、定位及表达分析[J]. 南京农业大学学报, 2019, 42(2):209-219.doi: 10.7685/jnau.201804050.
|
|
Huang L, Huang Y Z, Xuan H D, Ma L, Guo N, Zhao J M, Xing H. Cloning,localization and expression analysis of GmMYB46 in soybean[J]. Journal of Nanjing Agricultural University, 2019, 42(2):209-219.
|
| [31] |
|
|
Zhai Y, Zhang J, Zhao Y, Ren W W, Zhang C, Sun W S, Gao S T. Cloning and expression analysis of ERF transcription factor GmERF8 in soybean(Glycine max L.)[J]. Journal of Plant Genetic Resources, 2016, 17(6):1036-1040.
|
| [32] |
孙文秀, 邵晨阳, 陈妍妍, 聂明皓, 李震, 曹毅, 刘应保. 干旱胁迫下2种内生真菌对烟草生理生化指标及NAC基因表达的影响[J]. 华北农学报, 2024, 39(1):113-119.doi: 10.7668/hbnxb.20194526.
|
|
Sun W X, Shao C Y, Chen Y Y, Nie M H, Li Z, Cao Y, Liu Y B. Effects of two endophytic fungi on physiological and biochemical indexes and NAC gene expression in tobacco under drought stress[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 113-119.
doi: 10.7668/hbnxb.20194526
|
| [33] |
Yoo S Y, Kim Y, Kim S Y, Lee J S, Ahn J H. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis[J]. PLoS One, 2007, 2(7):e642.doi: 10.1371/journal.pone.0000642.
URL
|