| [1] |
Huh S U. Evolutionary diversity and function of metacaspases in plants:similar to but not caspases[J]. International Journal of Molecular Sciences, 2022, 23(9):4588.doi: 10.3390/ijms23094588.
URL
|
| [2] |
Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov P V. Metacaspases[J]. Cell Death & Differentiation, 2011, 18(8):1279-1288.doi: 10.1038/cdd.2011.66.
|
| [3] |
Wang L K, Zhang H. Genomewide survey and characterization of metacaspase gene family in rice ( Oryza sativa)[J]. Journal of Genetics, 2014, 93(1):93-102.doi: 10.1007/s12041-014-0343-6.
pmid: 24840826
|
| [4] |
Liu H, Liu J, Wei Y X. Identification and analysis of the metacaspase gene family in tomato[J]. Biochemical and Biophysical Research Communications, 2016, 479(3):523-529.doi: 10.1016/j.bbrc.2016.09.103.
pmid: 27664707
|
| [5] |
Fan S M, Liu A Y, Zhang Z, Zou X Y, Jiang X, Huang J Y, Fan L Q, Zhang Z B, Deng X Y, Ge Q, Gong W K, Li J W, Gong J W, Shi Y Z, Lei K, Zhang S Y, Jia T T, Zhang L P, Yuan Y L, Shang H H. Genome-wide identification and expression analysis of the metacaspase gene family in Gossypium species[J]. Genes, 2019, 10(7):527.doi: 10.3390/genes10070527.
URL
|
| [6] |
Coll N S, Epple P, Dangl J L. Programmed cell death in the plant immune system[J]. Cell Death & Differentiation, 2011, 18(8):1247-1256.doi: 10.1038/cdd.2011.37.
|
| [7] |
Hoeberichts F A,ten Have A,Woltering E J. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves[J]. Planta, 2003, 217(3):517-522.doi: 10.1007/s00425-003-1049-9.
pmid: 12783227
|
| [8] |
Zhou Y, Hu L F, Jiang L W, Liu S Q. Genome-wide identification,characterization,and transcriptional analysis of the metacaspase gene family in cucumber ( Cucumis sativus)[J]. Genome, 2018, 61(3):187-194.doi: 10.1139/gen-2017-0174.
URL
|
| [9] |
Pitsili E, Rodriguez-Trevino R, Ruiz-Solani N, Demir F, Kastanaki E, Dambire C, de Pedro-Jové R, Vercammen D, Salguero-Linares J, Hall H, Mantz M, Schuler M, Tuominen H, Van Breusegem F, Valls M, Munn-Bosch S, Holdsworth M J, Huesgen P F, Rodriguez-Villalon A, Coll N S. A phloem-localized Arabidopsis metacaspase (AtMC3) improves drought tolerance[J]. New Phytologist, 2023, 239(4):1281-1299.doi: 10.1111/nph.19022.
URL
|
| [10] |
陈雨蝶, 张泽荣, 李恒湘, 李天乐, 曾思杰, 邬贤梦, 熊兴华, 肖钢. 甘蓝型油菜BnEXO基因家族功能与表达分析[J]. 华北农学报, 2024, 39(5):24-32.doi: 10.7668/hbnxb.20194909.
|
|
Chen Y D, Zhang Z R, Li H X, Li T L, Zeng S J, Wu X M, Xiong X H, Xiao G. Gene family function and expression analysis of BnEXO in Brassica napus[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(5):24-32.
|
| [11] |
|
|
Wen Y C, Wang H Z, Shen J X, Liu G H, Zhang S F. Analysis of genetic diversity and genetic basis of Chinese rapeseed cultivars (Brassica napus L.) by sequence-related amplified polymorphism markers[J]. Scientia Agricultura Sinica, 2006, 39(2):246-256.
|
| [12] |
|
|
Li J M, Zhang Y W, Guo A Q, Zhai L J, Li H P, Li A G. Advances in research on cold resistance of rapeseed and analysis of rapeseed breeding in cold and dry regions of China[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(S1):131-144.
doi: 10.7668/hbnxb.20194305
|
| [13] |
Yang Z Q, Wang S B, Wei L L, Huang Y M, Liu D X, Jia Y P, Luo C F, Lin Y C, Liang C Y, Hu Y, Dai C, Guo L, Zhou Y M, Yang Q Y. BnIR:a multi-omics database with various tools for Brassica napus research and breeding[J]. Molecular Plant, 2023, 16(4):775-789.doi: 10.1016/j.molp.2023.03.007.
URL
|
| [14] |
Lamesch P, Berardini T Z, Li D H, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M, Karthikeyan A S, Lee C H, Nelson W D, Ploetz L, Singh S, Wensel A, Huala E. The Arabidopsis information resource (TAIR):improved gene annotation and new tools[J]. Nucleic Acids Research,2012,40:D1202-D1210.doi: 10.1093/nar/gkr1090.
|
| [15] |
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. Pfam:the protein families database in 2021[J]. Nucleic Acids Research, 2021, 49(D1):D412-D419.doi: 10.1093/nar/gkaa913.
|
| [16] |
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. Expasy,the Swiss bioinformatics resource portal,as designed by its users[J]. Nucleic Acids Research, 2021, 49(W1):W216-W227.doi: 10.1093/nar/gkab225.
|
| [17] |
Yu C S, Lin C J, Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions[J]. Protein Science, 2004, 13(5):1402-1406.doi: 10.1110/ps.03479604.
URL
|
| [18] |
Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, Xia R. TBtools-II:a'one for all,all for one' bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11):1733-1742.doi: 10.1016/j.molp.2023.09.010.
URL
|
| [19] |
Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite[J]. Nucleic Acids Research, 2015, 43(W1):W39-W49.doi: 10.1093/nar/gkv416.
|
| [20] |
Rombauts S, Dehais P, Van Montagu M, Rouze P. PlantCARE,a plant cis-acting regulatory element database[J]. Nucleic Acids Research, 1999, 27(1):295-296.doi: 10.1093/nar/27.1.295.
pmid: 9847207
|
| [21] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
| [22] |
Shabalina S A, Ogurtsov A Y, Spiridonov A N, Novichkov P S, Spiridonov N A, Koonin E V. Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes[J]. Molecular Biology and Evolution, 2010, 27(8):1745-1749.doi: 10.1093/molbev/msq086.
pmid: 20360214
|
| [23] |
Jain M, Khurana P, Tyagi A K, Khurana J P. Genome-wide analysis of intronless genes in rice and Arabidopsis[J]. Functional & Integrative Genomics, 2008, 8(1):69-78.doi: 10.1007/s10142-007-0052-9.
|
| [24] |
Liu H, Lyu H M, Zhu K K, Van de Peer Y,Max Cheng Z M. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families[J]. The Plant Journal, 2021, 105(4):1072-1082.doi: 10.1111/tpj.15088.
pmid: 33217085
|
| [25] |
pmid: 20202889
|
| [26] |
Guo J Y, Wu Y L, Huang J Q, Yu K H, Chen M L, Han Y J, Zhong Z H, Lu G D, Hong Y H, Wang Z H, Chen X F. The Magnaporthe oryzae effector Avr-PikD suppresses rice immunity by inhibiting an LSD1-like transcriptional activator[J]. The Crop Journal, 2024, 12(2):482-492.doi: 10.1016/j.cj.2024.01.011.
URL
|
| [27] |
Sun S J, Ma W, Jia Z C, Ou C M, Li M L, Mao P S. Genomic identification and expression profiling of lesion simulating disease genes in alfalfa ( Medicago sativa) elucidate their responsiveness to seed vigor[J]. Antioxidants, 2023, 12(9):1768.doi: 10.3390/antiox12091768.
URL
|
| [28] |
|
|
Wu Y R, Xie Q. ABA and plant stress response[J]. Chinese Bulletin of Botany, 2006, 41(5):511-518.
|
| [29] |
岑英, 余林婵, 劳子珊, 谭勇, 黄荣韶, 吴思滢, 姚绍嫦. 牛大力metacaspase基因 CsMC1的克隆及超表达载体构建[J]. 分子植物育种, 2023, 21(13):4301-4310.doi: 10.13271/j.mpb.021.004301.
|
|
Cen Y, Yu L C, Lao Z S, Tan Y, Huang R S, Wu S Y, Yao S C. Cloning and over-expression vector constructed of CsMC1 gene from Callerya speciosa(champ.ex Benth.) schot[J]. Molecular Plant Breeding, 2023, 21(13):4301-4310.
|
| [30] |
Klemencˇicˇ M, Funk C. Evolution and structural diversity of metacaspases[J]. Journal of Experimental Botany, 2019, 70(7):2039-2047.doi: 10.1093/jxb/erz082.
pmid: 30921456
|
| [31] |
Chapin L J, Jones M L. A type I and a type II metacaspase are differentially regulated during Corolla development and in response to abiotic and biotic stresses in Petunia×hybrida[J]. Horticulturae, 2022, 8(12):1151.doi: 10.3390/horticulturae8121151.
URL
|
| [32] |
Yue J Y, Wang Y J, Jiao J L, Wang W W, Wang H Z. The metacaspase TaMCA-id negatively regulates salt-induced programmed cell death and functionally links with autophagy in wheat[J]. Frontiers in Plant Science, 2022,13:904933.doi: 10.3389/fpls.2022.904933.
|
| [33] |
URL
|