| [1] |
Jin C L, Zeng H R, Gao C Q, Yan H C, Tan H Z, Wang X Q. Dietary supplementation with pioglitazone hydrochloride and chromium methionine manipulates lipid metabolism with related genes to improve the intramuscular fat and fatty acid profile of yellow-feathered chickens[J]. Journal of the Science of Food and Agriculture, 2020, 100(3):1311-1319.doi: 10.1002/jsfa.10146.
URL
|
| [2] |
|
|
Zhao W, Cao G W, Wang W Z, Deng Z Z, Zhang J, Gu Y L, Hu H H, Huang Z W. Bioinformatics analysis of genes related to inosine monophosphate specific deposition in chest muscle and leg muscle of Jingyuan chicken[J]. Journal of China Agricultural University, 2022, 27(5):227-239.
|
| [3] |
|
|
Lyu Y N, He C X, Lan L T. Research advances on the relationship between intramuscular fat and meat quality and influence factor of intramuscular fat in pigs[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(2):554-563.
|
| [4] |
|
|
Zhang L L, Li L, Zhu Z M, Miao Z W, Xin Q W, Zheng N Z. Identification of candidate genes related to meat flavor in Liancheng white duck(Anas platyrhynchos)based on RNA-seq[J]. Journal of Agricultural Biotechnology, 2021, 29(4):711-722.
|
| [5] |
San J S, Du Y T, Wu G F, Xu R F, Yang J C, Hu J M. Transcriptome analysis identifies signaling pathways related to meat quality in broiler chickens the extracellular matrix(ECM)receptor interaction signaling pathway[J]. Poultry Science, 2021, 100(6):101135.doi: 10.1016/j.psj.2021.101135.
|
| [6] |
Xiao C, Sun T T, Yang Z L, Xu W W, Wang J, Zeng L H, Deng J X, Yang X R. Transcriptome landscapes of differentially expressed genes related to fat deposits in Nandan-Yao chicken[J]. Functional & Integrative Genomics, 2021, 21(1):113-124.doi: 10.1007/s10142-020-00764-7.
|
| [7] |
Liu L, Liu X J, Cui H X, Liu R R, Zhao G P, Wen J. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens[J]. BMC Genomics, 2019, 20(1):863.doi: 10.1186/s12864-019-6221-0.
pmid: 31729950
|
| [8] |
Yu B J, Cai Z Y, Liu J M, Zhao W, Fu X, Gu Y L, Zhang J. Transcriptome and co-expression network analysis reveals the molecular mechanism of inosine monophosphate-specific deposition in chicken muscle[J]. Frontiers in Physiology, 2023, 14:1199311.doi: 10.3389/fphys.2023.1199311.
|
| [9] |
Wang S S, Zhang Y, Yuan X Y, Pan R, Yao W C, Zhong L, Song Q Q, Zheng S H, Wang Z X, Xu Q, Chang G B, Chen G H. Identification of differentially expressed microRNAs during preadipocyte differentiation in Chinese crested duck[J]. Gene, 2018, 661:126-132.doi: 10.1016/j.gene.2018.03.085.
pmid: 29604463
|
| [10] |
Gan L, Yan J, Liu Z J, Feng M, Sun C. Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ACC2 pathway in chicken adipocyte[J]. Journal of Cellular Biochemistry, 2015, 116(6):1090-1100.doi: 10.1002/jcb.25064.
pmid: 25536013
|
| [11] |
Haunerland N H, Spener F. Fatty acid-binding proteins insights from genetic manipulations[J]. Progress in Lipid Research, 2004, 43(4):328-349.doi: 10.1016/j.plipres.2004.05.001.
pmid: 15234551
|
| [12] |
|
|
Nong W L, Bi Y J, Li H X, Zhang L. H-FABP gene cloning,SNPs screening and bioinformatics analysis in Gansu black pig[J]. Acta Agriculturae Zhejiangensis, 2018, 30(3):378-385.
|
| [13] |
|
|
Yang R. Study on the characteristics of collagen in Guizhou local pigs and its influence on meat quality[D]. Guiyang: Guizhou University, 2020.
|
| [14] |
Thompson J, Winter N, Terwey D, Bratt J, Banaszak L. The crystal structure of the liver fatty acid-binding protein a complex with two bound oleates[J]. Journal of Biological Chemistry, 1997, 272(11):7140-7150.doi: 10.1074/jbc.272.11.7140.
pmid: 9054409
|
| [15] |
Mao H, Xu X, Liu H, Cao H, Dong X, Xu N, Zou X, Yin Z. The temporal-spatial patterns,polymorphisms and association analysis with meat quality traits of FABP1 gene in domestic pigeons( Columba livia)[J]. British Poultry Science, 2020, 61(3):232-241.doi: 10.1080/00071668.2020.1724880.
pmid: 32063032
|
| [16] |
|
|
Yang S K, Chang Z Y, Yan F F, Shang P, Qiang Y Z. Analysis of FABP1 gene polymorphism and differential expression between Tibetan and Yorkshire pigs[J]. Journal of Plateau Agriculture, 2023, 7(4):400-408.
|
| [17] |
|
|
Xiong X, Ruan Y, Xu H Q. Transcriptome-based analysis of the effects of interference with FABP1 gene on intramuscular fat deposition in pigs[J]. Journal of Southern Agriculture, 2023, 54(3):724-734.
|
| [18] |
Wang Y J, Tang K Q, Zhang W, Guo W L, Wang Y N, Zan L S, Yang W C. Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver[J]. PLoS One, 2019, 14(4):e0214144.doi: 10.1371/journal.pone.0214144.
|
| [19] |
Zhang Q, Shi H, Liu W, Wang Y, Wang Q, Li H. Differential expression of L-FABP and L-BABP between fat and lean chickens[J]. Genetics and Molecular Research, 2013, 12(4):4192-4206.doi: 10.4238/2013.october.7.5.
pmid: 24114214
|
| [20] |
Adiguzel D, Celik-Ozenci C. FoxO1 is a cell-specific core transcription factor for endometrial remodeling and homeostasis during menstrual cycle and early pregnancy[J]. Human Reproduction Update, 2021, 27(3):570-583.doi: 10.1093/humupd/dmaa060.
pmid: 33434267
|
| [21] |
|
|
Zhao H, Zhang Y J, Shu L Y, Song G Y. Effect of FOXO1 on glucose and lipid metabolism in liver[J]. Basic & Clinical Medicine, 2019, 39(1):115-119.
|
| [22] |
Kurakazu I, Akasaki Y, Hayashida M, Tsushima H, Goto N, Sueishi T, Toya M, Kuwahara M, Okazaki K, Duffy T, Lotz M K, Nakashima Y. FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor β1 signaling[J]. Journal of Biological Chemistry, 2019, 294(46):17555-17569.doi: 10.1074/jbc.RA119.009409.
pmid: 31601652
|
| [23] |
熊祥平. Sirt1通过PI3K-Akt-mTOR信号途径对鹅肝细胞脂质沉积的影响研究[D]. 雅安: 四川农业大学, 2016.
|
|
Xiong X P. Effect of Sirt1 on lipid deposition in goose liver cells through PI3K-Akt-mTOR signaling pathway[D]. Yaan: Sichuan Agricultural University, 2016.
|
| [24] |
|
|
Wen X Q. Regulatory mechanism of apoptosis induced by high NEFA via FOXO1 pathway in endometrial epithelial cells of dairy cows[D]. Daqing: Heilongjiang Bayi Agricultural Reclamation University, 2023.
|
| [25] |
李家旋, 宋倩倩, 徐鸣鸿, 周婷婷, 严丹, 田慧月, 常国斌, 陈国宏, 王志秀. FoxO1基因对鸭脂肪沉积的作用及机制初探[J]. 中国家禽, 2022, 44(7):114-118.doi: 10.16372/j.issn.1004-6364.2022.07.018.
|
|
Li J X, Song Q Q, Xu M H, Zhou T T, Yan D, Tian H Y, Chang G B, Chen G H, Wang Z X. Preliminary study on effect and mechanism of FoxO1 gene on fat deposition in duck[J]. China Poultry, 2022, 44(7):114-118.
|
| [26] |
Dai J Y, Liang K, Zhao S, Jia W T, Liu Y, Wu H K, Lv J, Cao C, Chen T, Zhuang S T, Hou X M, Zhou S J, Zhang X N, Chen X W, Huang Y Y, Xiao R P, Wang Y L, Luo T P, Xiao J Y, Wang C. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26):E5896-E5905.doi: 10.1073/pnas.1801745115.
|
| [27] |
Morash A J, McClelland G B. Regulation of carnitine palmitoyltransferase(CPT)I during fasting in rainbow trout( Oncorhynchus mykiss)promotes increased mitochondrial fatty acid oxidation[J]. Physiological and Biochemical Zoology, 2011, 84(6):625-633.doi: 10.1086/662552.
URL
|
| [28] |
Tan S K, Welford S M. Lipid in renal carcinoma:queen bee to target?[J]. Trends in Cancer, 2020, 6(6):448-450.doi: 10.1016/j.trecan.2020.02.017.
URL
|
| [29] |
Thapa D, Wu K Y, Stoner M W, Xie B X, Zhang M L, Manning J R, Lu Z P, Li J H, Chen Y, Gucek M, Playford M P, Mehta N N, Harmon D, O'Doherty R M, Jurczak M J, Sack M N, Scott I. The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA[J]. Journal of Biological Chemistry, 2018, 293(46):17676-17684.doi: 10.1074/jbc.AC118.005462.
URL
|
| [30] |
|
|
Liang J J, Lin Y Q, Yu Y Y, Wang Y, Zhu J J. Cloning and expression of goat CPT1A gene and its correlation with intramuscular fat content[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(5):231-238.
|
| [31] |
叶凤江. CPT1A、MTP基因干扰对三种糖诱导的鹅肝细胞脂质沉积的影响[D]. 雅安: 四川农业大学, 2018.
|
|
Ye F J. Effects of CPT1A and MTP gene interference on lipid deposition in goose liver cells induced by three sugars[D]. Yaan: Sichuan Agricultural University, 2018.
|
| [32] |
|
|
Tu Y J, Ju X J, Shan Y J, Ji G G, Liu Y F, Zhang M, Zou J M, Shu J T. Temporal and spatial expression of CPT1A gene in Huashan partridge chicken[J]. China Poultry, 2021, 43(6):20-24.
|
| [33] |
|
|
Wang Y X, Liao Y Y, A Y M G L, Xu H W, Yang J T, Cai Y. Recent progress on the mechanism of fat metabolism in sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(17):33-36.
|
| [34] |
|
|
Wu Y, Yuan H X, Chen X. Expression analysis of PPARγ and FAS genes in different tissues of white washed pigs and the F1 generation of Subai crosses[J]. Chinese Journal of Animal Husbandry, 2020, 56(3):66-69.
|
| [35] |
Zhao S M, Ren L J, Chen L, Zhang X, Cheng M L, Li W Z, Zhang Y Y, Gao S Z. Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition[J]. Lipids, 2009, 44(11):1029-1037.doi: 10.1007/s11745-009-3356-9.
pmid: 19847466
|
| [36] |
Lashkari S, Moller J W, Jensen S K, Hellgren L I, Sørensen M T, Theil P K, Sejrsen K. Changes in long-chain fatty acid composition of milk fat globule membrane and expression of mammary lipogenic genes in dairy cows fed sunflower seeds and rumen-protected choline[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(6):1606-1619.doi: 10.1111/jpn.13386.
URL
|
| [37] |
Lyu Y T, Zhang S H, Guan W T, Chen F, Zhang Y Z, Chen J, Liu Y. Metabolic transition of milk triacylglycerol synthesis in response to varying levels of palmitate in porcine mammary epithelial cells[J]. Genes & Nutrition, 2018, 13(1):18.doi: 10.1186/s12263-018-0606-6.
|
| [38] |
|
|
Qu G J, Dong X Q, Meng K Y, Yang L Y, Ding S H, Qin G X. FAS mRNA expression of different hybridized combination beef cattle and its effect on intramuscular fat deposition[J]. Chinese Journal of Veterinary Science, 2016, 36(7):1183-1185,1211.
|