[1] |
Hiendleder S, Kaupe B, Wassmuth R, Janke A. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies[J]. Proceedings of the Royal Society of London Series B:Biological Sciences, 2002, 269(1494): 893-904. doi: 10.1098/rspb.2002.1975.
|
[2] |
Kalds P, Luo Q, Sun K, Zhou S, Chen Y, Wang X. Trends towards revealing the genetic architecture of sheep tail patterning: promising genes and investigatory pathways[J]. Animal Genetics, 2021, 52(6): 799-812. doi: 10.1111/age.13133.
pmid: 34472112
|
[3] |
Morley F H W, Donald A D, Donnelly J R, Axelsen A, Waller P J. Blowfly strike in the breech region of sheep in relation to helminth infection[J]. Australian Veterinary Journal, 1976, 52(7): 325-329. doi: 10.1111/j.1751-0813.1976.tb02398.x.
pmid: 985248
|
[4] |
French N P, Wall R, Morgan K L. The seasonal pattern of sheep blowfly strike in England and Wales[J]. Medical and Veterinary Entomology, 1995, 9(1): 1-8. doi: 10.1111/j.1365-2915.1995.tb00110.x.
pmid: 7696683
|
[5] |
James P J. Genetic alternatives to mulesing and tail docking in sheep: a review[J]. Australian Journal of Experimental Agriculture, 2006, 46(1): 1. doi: 10.1071/ea05100.
|
[6] |
Hümmelchen H, Wagner H, Brügemann K, Wenisch S, König S, Wehrend A. Frequency and characterisation of anomalies and fractures of the caudal spine in sheep with undocked tails[J]. Animals, 2023, 13(8): 1419. doi: 10.3390/ani13081419.
|
[7] |
French N P, Wall R, Cripps P J, Morgan K L. Prevalence,regional distribution and control of blowfly strike in England and Wales[J]. Veterinary Record, 1992, 131(15): 337-342. doi: 10.1136/vr.131.15.337.
pmid: 1441144
|
[8] |
French N P, Wall R, Morgan K L. Lamb tail docking: A controlled field study of the effects of tail amputation on health and productivity[J]. Veterinary Record, 1994, 134(18): 463-467. doi: 10.1136/vr.134.18.463.
pmid: 8059511
|
[9] |
Grant C. Behavioural responses of lambs to common painful husbandry procedures[J]. Applied Animal Behaviour Science, 2004, 87(3/4): 255-273. doi: 10.1016/j.applanim.2004.01.011.
|
[10] |
Scobie D R, Bray A R, O'Connell D. A breeding goal to improve the welfare of sheep[J]. Animal Welfare, 1999, 8(4): 391-406. doi: 10.1017/s0962728600022004.
|
[11] |
Jordan R M. The description of the No-tail breed of sheep following forty years of breeding[J]. Proceedings of the South Dakota Academy of Science, 1952, 31:103-104.
|
[12] |
pmid: 4448895
|
[13] |
pmid: 874307
|
[14] |
Scobie D, O'Connell D. Genetic reduction of tail length in New Zealand sheep[J]. Proceedings of the New Zealand Society of Animal Production, 2002, 62:195-198.
|
[15] |
Dennis S M. Congenital tail defects in lambs[J]. The Cornell Veterinarian, 1972, 62(4): 568-572.
pmid: 5077535
|
[16] |
James P J, Gare D R, Singh A W, Clark J P, Ponzonf R W, Ancell P M. Studies of the potential for breeding short tail Merinos[J]. Wool Technology & Sheep Breeding, 1990, 38(3-4):106-111. doi: 10.1016/0921-4488(91)90075-2.
|
[17] |
James P J, Ponzoni R W, Gare D R, Cockrum K S. Inheritance of short tailedness in South Australian Merinos[J]. Proceedings of the Australian Association of Animal Breeding and Genetics 1991(9):404-407.
|
[18] |
Johnson P L, Scobie D R, Dodds K G, Powdrell S J H, Rowe S J, McRae K M. Genetic parameter analysis of bareness and tail traits in New Zealand sheep[J]. Journal of Animal Science, 2023, 101:skad161. doi: 10.1093/jas/skad161.
|
[19] |
Kingsley E P, Kozak K M, Pfeifer S P, Yang D S, Hoekstra H E. The ultimate and proximate mechanisms driving the evolution of long tails in forest Deer mice[J]. Evolution, 2017, 71(2): 261-273. doi: 10.1111/evo.13150.
pmid: 27958661
|
[20] |
Thisse C, Thisse B, Schilling T F, Postlethwait J H. Structure of the zebrafish snail1 gene and its expression in wild-type,spadetail and no tail mutant embryos[J]. Development, 1993, 119(4): 1203-1215. doi: 10.1242/dev.119.4.1203.
pmid: 8306883
|
[21] |
Wilm B, Dahl E, Peters H, Balling R, Imai K. Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15): 8692-8697. doi: 10.1073/pnas.95.15.8692.
pmid: 9671740
|
[22] |
Greco T L, Takada S, Newhouse M M, McMahon J A, McMahon A P, Camper S A. Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development[J]. Genes & Development, 1996, 10(3): 313-324. doi: 10.1101/gad.10.3.313.
|
[23] |
Vlangos C N, Siuniak A N, Robinson D, Chinnaiyan A M, Lyons R H Jr, Cavalcoli J D, Keegan C E. Next-generation sequencing identifies the Danforth's short tail mouse mutation as a retrotransposon insertion affecting Ptf1a expression[J]. PLoS Genetics, 2013, 9(2): e1003205. doi: 10.1371/journal.pgen.1003205.
|
[24] |
van de Ven C, Bialecka M, Neijts R, Young T, Rowland J E, Stringer E J, Van Rooijen C, Meijlink F, Nóvoa A, Freund J N, Mallo M, Beck F, Deschamps J. Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone[J]. Development, 2011, 138(16): 3451-3462. doi: 10.1242/dev.066118.
pmid: 21752936
|
[25] |
Lyons L A, Creighton E K, Alhaddad H, Beale H C, Grahn R A, Rah H, Maggs D J, Helps C R, Gandolfi B. Whole genome sequencing in cats,identifies new models for blindness in AIPL1 and somite segmentation in HES7[J]. BMC Genomics, 2016, 17(1): 265. doi: 10.1186/s12864-016-2595-4.
|
[26] |
Guo Y, Tian J, Song C, Han W, Zhu C H, Li H F, Zhang S J, Chen K W, Li N, Carlborg Ö, Hu X X. Mapping and functional dissection of the rumpless trait in Piao chicken identifies a causal loss of function mutation in the novel gene rum[J]. Molecular Biology and Evolution, 2023, 40(12): msad273. doi: 10.1093/molbev/msad273.
|
[27] |
Zhi D F, Da L, Liu M N, Cheng C, Zhang Y K, Wang X, Li X N, Tian Z P, Yang Y Y, He T Y, Long X, Wei W, Cao G F. Whole genome sequencing of Hulunbuir short-tailed sheep for identifying candidate genes related to the short-tail phenotype[J]. G3, 2018, 8(2): 377-383. doi: 10.1534/g3.117.300307.
|
[28] |
Lagler D K, Hannemann E, Eck K, Klawatsch J, Seichter D, Russ I, Mendel C, Lühken G, Krebs S, Blum H, Upadhyay M, Medugorac I. Fine-mapping and identification of candidate causal genes for tail length in the Merinolandschaf breed[J]. Communications Biology, 2022, 5(1): 918. doi: 10.1038/s42003-022-03854-3.
pmid: 36068271
|
[29] |
Li R, Gong M, Zhang X M, Wang F, Liu Z Y, Zhang L, Yang Q M, Xu Y, Xu M S, Zhang H H, Zhang Y F, Dai X L, Gao Y P, Zhang Z B, Fang W W, Yang Y T, Fu W W, Cao C N, Yang P, Ghanatsaman Z A, Negari N J, Nanaei H A, Yue X P, Song Y X, Lan X Y, Deng W D, Wang X H, Pan C Y, Xiang R D, Ibeagha-Awemu E M, Heslop-Harrison P J S, Rosen B D, Lenstra J A, Gan S Q, Jiang Y. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes[J]. Genome Research, 2023, 33(3): 463-477. doi: 10.1101/gr.277372.122.
pmid: 37310928
|
[30] |
Li X, He S G, Li W R., Luo L Y, Yan Z, Mo D X, Wan X, Lv F H, Yang J, Xu Y X, Deng J, Zhu Q H, Xie X L, Xu S S, Liu C X, Peng X R, Han B, Li Z H, Chen L, Han J L, Ding X Z, Dingkao R Q, Chu Y F, Wu J Y, Wang L M, Zhou P, Liu M J, Li M H. Genomic analyses of wild argali,domestic sheep,and their hybrids provide insights into chromosome evolution,phenotypic variation,and germplasm innovation[J]. Genome Research, 2022, 32(9):1669-1684. doi: 10.1101/gr.276769.122.
|
[31] |
|
|
He P F, Liang L, Ba Y H, He X, Li J Y, He S G, Li W R. Comparative analysis of meat traits such as back fat thickness and eye muscle area of lambs from different cross combinations of Kazakh sheep and Texel sheep[J]. Chinese Journal of Animal Science, 2023, 59(10): 157-165.
|
[32] |
Haworth K, Putt W, Cattanach B, Breen M, Binns M, Lingaas F, Edwards Y H. Canine homolog of the T-box transcription factor T; failure of the protein to bind to its DNA target leads to a short-tail phenotype[J]. Mammalian Genome, 2001, 12(3):212-218. doi: 10.1007/s003350010253.
pmid: 11252170
|
[33] |
Hytönen M K, Grall A, Hédan B, Dréano S, Seguin S J, Delattre D, Thomas A, Galibert F, Paulin L, Lohi H, Sainio K, André C. Ancestral T-box mutation is present in many,but not all,short-tailed dog breeds[J]. Journal of Heredity, 2009, 100(2): 236-240. doi: 10.1093/jhered/esn085.
pmid: 18854372
|
[34] |
Schifferl D, Scholze-Wittler M, Wittler L, Veenvliet J V, Koch F, Herrmann B G. A 37 kb region upstream of brachyury comprising a notochord enhancer is essential for notochord and tail development[J]. Development, 2021, 148(23): dev200059. doi: 10.1242/dev.200059.
|
[35] |
Schifferl D, Scholze-Wittler M, Villaronga Luque A, Pustet M, Wittler L, Veenvliet J V, Koch F, Herrmann B G. Genome-wide identification of notochord enhancers comprising the regulatory landscape of the brachyury locus in mouse[J]. Development, 2023, 150(22): dev202111. doi: 10.1242/dev.202111.
|
[36] |
Economides K D, Zeltser L, Capecchi M R. Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae[J]. Developmental Biology, 2003, 256(2): 317-330. doi: 10.1016/s0012-1606(02)00137-9.
pmid: 12679105
|