[1] |
Damm E, Ullrich K K, Amos W B, Odenthal-Hesse L. Evolution of the recombination regulator PRDM9 in minke whales[J]. BMC Genomics, 2022, 23(1):212.doi: 10.1186/s12864-022-08305-1.
pmid: 35296233
|
[2] |
Thibault-Sennett S, Yu Q, Smagulova F, Cloutier J, Brick K, Camerini-Otero R D, Petukhova G V. Interrogating the functions of PRDM9 domains in meiosis[J]. Genetics, 2018, 209(2):475-487.doi: 10.1534/genetics.118.300565.
pmid: 29674518
|
[3] |
Alleva B, Brick K, Pratto F, Huang M N, Camerini-Otero R D. Cataloging human PRDM9 allelic variation using long-read sequencing reveals PRDM9 population specificity and two distinct groupings of related alleles[J]. Frontiers in Cell and Developmental Biology, 2021, 9(9):675286.doi: 10.3389/FCELL.2021.675286.
URL
|
[4] |
Paigen K, Petkov P M. PRDM9 and its role in genetic recombination[J]. Trends in Genetics, 2018, 34(4):291-300.doi: 10.1016/j.tig.2017.12.017.
pmid: 29366606
|
[5] |
Spruce C, Dlamini S, Ananda G, Bronkema N, Tian H, Paigen K, Carter G W, Baker C L. HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots[J]. Genes & Development, 2020, 34(5-6):398-412.doi: 10.1101/gad.333542.119.
URL
|
[6] |
Baker C L, Kajita S, Walker M, Saxl R L, Raghupathy N, Choi K, Petkov P M, Paigen K. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination[J]. PLoS Genetics, 2015, 11(1):e1004916.doi: 10.1371/journal.pgen.1004916.
URL
|
[7] |
Schwarz T, Striedner Y, Horner A, Haase K, Kemptner J, Zeppezauer N, Hermann P, Tiemann-Boege I. PRDM9 forms a trimer by interactions within the zinc finger array[J]. Life Science Alliance, 2019, 2(4):e201800291.doi: 10.26508/lsa.201800291.
URL
|
[8] |
Buard J, Rivals E, Dunoyer de Segonzac D, Garres C, Caminade P, de Massy B, Boursot P. Diversity of Prdm9 zinc finger array in wild mice unravels new facets of the evolutionary turnover of this coding minisatellite[J]. PLoS One, 2014, 9(1):e85021.doi: 10.1371/journal.pone.0085021.
URL
|
[9] |
Steiner C C, Ryder O A. Characterization of Prdm9 in equids and sterility in mules[J]. PLoS One, 2013, 8(4):e61746.doi: 10.1371/journal.pone.0061746.
URL
|
[10] |
Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice[J]. Science, 2010, 327(5967):836-840.doi: 10.1126/science.1183439.
pmid: 20044539
|
[11] |
Zhou Y, Shen B J, Jiang J C, Padhi A, Park K E, Oswalt A, Sattler C G, Telugu B P, Chen H, Cole J B, Liu G E, Ma L. Construction of PRDM9 allele-specific recombination maps in cattle using large-scale pedigree analysis and genome-wide single sperm genomics[J]. DNA Research, 2018, 25(2):183-194.doi: 10.1093/dnares/dsx048.
URL
|
[12] |
Gergelits V, Parvanov E, Simecek P, Forejt J. Chromosome-wide characterization of meiotic noncrossovers(gene conversions)in mouse hybrids[J]. Genetics, 2021, 217(1):1-14.doi: 10.1093/genetics/iyaa013.
pmid: 33683354
|
[13] |
Ahlawat S, Sharma P, Sharma R, Arora R, De S. Zinc finger domain of the PRDM9 gene on chromosome 1 exhibits high diversity in ruminants but its paralog PRDM7 contains multiple disruptive mutations[J]. PLoS One, 2016, 11(5):e0156159.doi: 10.1371/journal.pone.0156159.
URL
|
[14] |
Kono H, Tamura M, Osada N, Suzuki H, Abe K, Moriwaki K, Ohta K, Shiroishi T. Prdm9 polymorphism unveils mouse evolutionary tracks[J]. DNA Research, 2014, 21(3):315-326.doi: 10.1093/dnares/dst059.
pmid: 24449848
|
[15] |
Ahlawat S, Sharma P, Sharma R, Arora R, Verma N K, Brahma B, Mishra P, De S. Evidence of positive selection and concerted evolution in the rapidly evolving PRDM9 zinc finger domain in goats and sheep[J]. Animal Genetics, 2016, 47(6):740-751.doi: 10.1111/age.12487.
pmid: 27621101
|
[16] |
|
|
Wang Y, Liu X B, He Z L, Wang J K, Ma Z L. Feeding management of black sheep breeding rams in Liangshan[J]. The Chinese Livestock and Poultry Breeding, 2020, 16(10):101.
|
[17] |
|
|
Wang Y, Liu X B, He Z L, Wang J K, Ma Z L. Preliminary report on the resource survey of local breed black sheep in Liangshan prefecture[J]. The Chinese Livestock and Poultry Breeding, 2021, 17(3):10-11.
|
[18] |
何子拉, 黄卫平, 何春, 孙艳, 王毅, 王强, 马英. 凉山黑绵羊屠宰测定结果分析报告[J]. 畜牧兽医科学(电子版), 2021(17):8-11.
|
|
He Z L, Huang W P, He C, Sun Y, Wang Y, Wang Q, Ma Y. Analytical report on the slaughter determination results of Liangshan black sheep[J]. Graziery Veterinary Sciences(Electronic Version), 2021(17):8-11.
|
[19] |
Powers N R, Parvanov E D, Baker C L, Walker M, Petkov P M, Paigen K. The meiotic recombination activator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo[J]. PLoS Genetics, 2016, 12(6):e1006146.doi: 10.1371/journal.pgen.1006146.
URL
|
[20] |
Groeneveld L F, Atencia R, Garriga R M, Vigilant L. High diversity at PRDM9 in chimpanzees and bonobos[J]. PLoS One, 2012, 7(7):e39064.doi: 10.1371/journal.pone.0039064.
URL
|
[21] |
Ahlawat S, De S, Sharma P, Sharma R, Arora R, Kataria R S, Datta T K, Singh R K. Evolutionary dynamics of meiotic recombination hotspots regulator PRDM9 in bovids[J]. Molecular Genetics and Genomics, 2017, 292(1):117-131.doi: 10.1007/s00438-016-1260-6.
pmid: 27744561
|
[22] |
Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3):314-331.
pmid: 6247908
|