[1] |
Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977.doi: 10.1126/science.aau6977.
|
[2] |
Edmondson P W. Milking machines and mastitis[J]. The Veterinary Record, 1996, 138(11):263-264.
|
[3] |
Heikkilä A M, Liski E, Pyörälä S, Taponen S. Pathogen-specific production losses in bovine mastitis[J]. Journal of Dairy Science, 2018, 101(10):9493-9504.doi: 10.3168/jds.2018-14824.
pmid: 30122416
|
[4] |
Gomes F, Saavedra M J, Henriques M. Bovine mastitis disease/pathogenicity:evidence of the potential role of microbial biofilms[J]. Pathogens and Disease, 2016, 74(3):ftw006.doi: 10.1093/femspd/ftw006.
|
[5] |
|
|
Yuan H G, Ding L J. Diagnosis and prevention of mastitis in dairy cows[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2019(3):24-25.
|
[6] |
李陇平. 奶牛乳房炎病原菌噬菌体的筛选和预防应用研究[D]. 杨凌: 西北农林科技大学, 2011.
|
|
Li L P. Isolation and application of bacteriophage in prevention of mastitis in dairy cows[D]. Yangling: Northwest A & F University, 2011.
|
[7] |
Piotrowska-Tomala K K, Siemieniuch M J, Szóstek A Z, Korzekwa A J, Woclawek-Potocka I, Galváo A M, Okuda K, Skarzynski D J. Lipopolysaccharides,cytokines,and nitric oxide affect secretion of prostaglandins and leukotrienes by bovine mammary gland epithelial cells[J]. Domestic Animal Endocrinology, 2012, 43(4):278-288.doi: 10.1016/j.domaniend.2012.04.005.
pmid: 22608768
|
[8] |
Hoeben D, Burvenich C, Trevisi E, Bertoni G, Hamann J, Bruckmaier R M, Blum J W. Role of endotoxin and TNF-alpha in the pathogenesis of experimentally induced coliform mastitis in periparturient cows[J]. The Journal of Dairy Research, 2000, 67(4):503-514.doi: 10.1017/s0022029900004489.
|
[9] |
Wellnitz O, Bruckmaier R M. The innate immune response of the bovine mammary gland to bacterial infection[J]. Veterinary Journal, 2012, 192(2):148-152.doi: 10.1016/j.tvjl.2011.09.013.
|
[10] |
Taponen S, Salmikivi L, Simojoki H, Koskinen M T, Pyörälä S. Real-time polymerase chain reaction-based identification of bacteria in milk samples from bovine clinical mastitis with no growth in conventional culturing[J]. Journal of Dairy Science, 2009, 92(6):2610-2617.doi: 10.3168/jds.2008-1729.
pmid: 19447993
|
[11] |
Meiri-Bendek I, Lipkin E, Friedmann A, Leitner G, Saran A, Friedman S, Kashi Y. A PCR-based method for the detection of Streptococcus agalactiae in milk[J]. Journal of Dairy Science, 2002, 85(7):1717—1723.doi: 10.3168/jds.S0022-0302(02)74245-8.
pmid: 12201522
|
[12] |
Petti C A, Polage C R, Schreckenberger P. The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods[J]. Journal of Clinical Microbiology, 2005, 43(12):6123—6125.doi: 10.1128/JCM.43.12.6123-6125.2005.
pmid: 16333109
|
[13] |
沈冰蕾. 奶牛乳腺上皮细胞microRNA表达谱构建及乳脂代谢相关microRNA的筛选和验证[D]. 长春: 吉林大学, 2016.
|
|
Shen B L. Study on the identification of microRNAs in bovine mammary epithelial cells and the screening of microRNAs related to milk fat metabolism[D]. Changchun: Jilin University, 2016.
|
[14] |
Naeem A, Zhong K, Moisá S J, Drackley J K, Moyes K M, Loor J J. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis[J]. Journal of Dairy Science, 2012, 95(11):6397-6408.doi: 10.3168/jds.2011-5173.
pmid: 22959936
|
[15] |
Jin W W, Ibeagha-Awemu E M, Liang G X, Beaudoin F, Zhao X, Guan L L. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles[J]. BMC Genomics, 2014, 15:181.doi: 10.1186/1471-2164-15-181.
|
[16] |
Tsitsiou E, Lindsay M A. MicroRNAs and the immune response[J]. Current Opinion in Pharmacology, 2009, 9(4):514-520.doi: 10.1016/j.coph.2009.05.003.
pmid: 19525145
|
[17] |
Wang X P, Luoreng Z M, Zan L S, Raza S H A, Li F, Li N, Liu S. Expression patterns of miR-146a and miR-146b in mastitis infected dairy cattle[J]. Molecular and Cellular Probes, 2016, 30(5):342-344.doi: 10.1016/j.mcp.2016.08.004.
pmid: 27531280
|
[18] |
赵文苹. LPS刺激奶牛乳腺上皮细胞后外泌体的分离鉴定及miRNA分析[D]. 大庆: 黑龙江八一农垦大学, 2019.
|
|
Zhao W P. MiRNA profiling of exosome isolated from LPS-Challenged dairy cows mammary epithelial cell[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019.
|
[19] |
王应安, 张才骏, 王占仓, 张生福. 奶牛隐性乳房炎诊断方法的比较试验[J]. 青海畜牧兽医学院学报, 1987, 4(2):9-12,34.
|
|
Wang Y A, Zhang C J, Wang Z C, Zhang S F. Comparative test of diagnostic methods for subclinical mastitis in dairy cows[J]. Journal of Qinghai Animal Husbandry and Veterinary College, 1987, 4(2):9-12,34.
|
[20] |
Sun Y, Li L, Wu J, Yu P, Li C M, Tang J, Li X J, Huang S, Wang G L. Bovine recombinant lipopolysaccharide binding protein(BRLBP)regulated apoptosis and inflammation response in lipopolysaccharide-challenged bovine mammary epithelial cells(BMEC)[J]. Molecular Immunology, 2015, 65(2):205-214.doi: 10.1016/j.molimm.2015.01.026.
pmid: 25700343
|
[21] |
Rainard P, Riollet C. Mobilization of neutrophils and defense of the bovine mammary gland[J]. Reproduction,Nutrition,Development, 2003, 43(5):439-457.doi: 10.1051/rnd:2003031.
|
[22] |
Hu S, Concha C, Lin F, Persson Waller K. Adjuvant effect of ginseng extracts on the immune responses to immunisation against Staphylococcus aureus in dairy cattle[J]. Veterinary Immunology and Immunopathology, 2003, 91(1):29-37.doi: 10.1016/s0165-2427(02)00264-7.
pmid: 12507847
|
[23] |
Hagiwara K, Yamanaka H, Hisaeda K, Taharaguchi S, Kirisawa R, Iwai H. Concentrations of IL-6 in serum and whey from healthy and mastitic cows[J]. Veterinary Research Communications, 2001, 25(2):99-108.doi: 10.1023/a:1006400801305.
pmid: 11243660
|
[24] |
Ohtsuka H, Koiwa M, Hatsugaya A, Kudo K, Hoshi F, Itoh N, Yokota H, Okada H, Kawamura S. Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver[J]. Journal of Veterinary Medical Science, 2001, 63(9):1021-1025.doi: 10.1292/jvms.63.1021.
pmid: 11642272
|
[25] |
|
|
Ma Y N, He P J, Ma Y S, Dong Y J, Zhu J, Lei Z M, Liu Z, Wu J P. Correlation between PCR-SSCP polymorphism of part FASN gene sequence and milk traits in Chinese holstein cattle[J]. Journal of Northwest A&F University(Natural Science Edition), 2013, 41(12):1-6.
|
[26] |
Riches A, Campbell E, Borger E, Powis S. Regulation of exosome release from mammary epithelial and breast cancer cells-a new regulatory pathway[J]. European Journal of Cancer, 2014, 50(5):1025-1034.doi: 10.1016/j.ejca.2013.12.019.
|
[27] |
潘琪琪. bta-miR-224调控奶牛乳腺上皮细胞TG生成和凋亡机制的研究[D]. 大庆: 黑龙江八一农垦大学, 2017.
|
|
Pan Q Q. The research on mechanism of bta-miR-224 regulating triglycerideogenesis and apoptosis in dairy cow mammary epithelial cells[D]. Daqing: Heilongjiang Bayi Agricultural University, 2017.
|
[28] |
Zhang Y Y, Wang Y N, Wang H B, Ma X Y, Zan L S. MicroRNA-224 impairs adipogenic differentiation of bovine preadipocytes by targeting LPL[J]. Molecular and Cellular Probes, 2019, 44:29-36.doi: 10.1016/j.mcp.2019.01.005.
pmid: 30703449
|
[29] |
Chen Z, Xu X, Tan T L, Chen D J, Liang H J, Sun K D, Li M X, Zhang H M, Mao Y J, Yang Z P. MicroRNA-145 regulates immune cytokines via targeting FSCN1 in Staphylococcus aureus-induced mastitis in dairy cows[J]. Reproduction in Domestic Animals, 2019, 54(6):882-891.doi: 10.1111/rda.13438.
pmid: 30974481
|