[1] |
Nakayama K, Saito Y, Sanbongi C, Murata K, Urashima T. Effects of low-dose milk protein supplementation following low-to-moderate intensity exercise training on muscle mass in healthy older adults:A randomized placebo-controlled trial[J]. European Journal of Nutrition, 2021, 60(2):917-928.doi: 10.1007/s00394-020-02302-4.
|
[2] |
Vogel K G Ⅲ, Carter B G, Cheng N, Barbano D M, Drake M A. Ready-to-drink protein beverages:Effects of milk protein concentration and type on flavor[J]. Journal of Dairy Science, 2021, 104(10):10640-10653.doi: 10.3168/jds.2021-20522.
URL
|
[3] |
Balthazar C F, Pimentel T C, Ferrão L L, Almada C N, Santillo A, Albenzio M, Mollakhalili N, Mortazavian A M, Nascimento J S, Silva M C, Freitas M Q, Sant'Ana A S, Granato D, Cruz A G. Sheep milk:Physicochemical characteristics and relevance for functional food development[J]. Comprehensive Reviews in Food Science and Food Safety, 2017, 16(2):247-262.doi: 10.1111/1541-4337.12250.
URL
|
[4] |
Xu L B, Hanigan M D, Lin X Y, Li M M, Yan Z G, Hu Z Y, Hou Q L, Wang Y, Shi K R, Wang Z H. Effects of jugular infusions of isoleucine,leucine,methionine,threonine,and other amino acids on insulin and glucagon concentrations,mammalian target of rapamycin(mTOR)signaling,and lactational performance in goats[J]. Journal of Dairy Science, 2019, 102(10):9017-9027.doi: 10.3168/jds.2018-16102.
pmid: 31351725
|
[5] |
Pszczolkowski V L, Arriola Apelo S I. The market for amino acids:Understanding supply and demand of substrate for more efficient milk protein synthesis[J]. Journal of Animal Science and Biotechnology, 2020, 11(1):1-12.doi: 10.1186/s40104-020-00514-6.
|
[6] |
Liu E, VandeHaar M J. Relationship of residual feed intake and protein efficiency in lactating cows fed high-or low-protein diets[J]. Journal of Dairy Science, 2020, 103(4):3177-3190.doi: 10.3168/jds.2019-17567.
pmid: 32059861
|
[7] |
Nursoy H, Ronquillo M G, Faciola A P, Broderick G A. Lactation response to soybean meal and rumen-protected methionine supplementation of corn silage-based diets[J]. Journal of Dairy Science, 2018, 101(3):2084-2095.doi: 10.3168/jds.2017-13227.
pmid: 29290449
|
[8] |
Gonzalez Ronquillo M, Faciola A P, Nursoy H, Broderick G A. Effect of increasing dietary protein with constant lysine:Methionine ratio on production and omasal flow of nonammonia nitrogen in lactating dairy cows[J]. Journal of Dairy Science, 2021, 104(5):5319-5331.doi: 10.3168/jds.2020-19541.
pmid: 33663832
|
[9] |
Hassan F U, Guo Y X, Li M W, Tang Z H, Peng L J, Liang X, Yang C J. Effect of methionine supplementation on rumen microbiota,fermentation,and amino acid metabolism in in vitro cultures containing nitrate[J]. Microorganisms, 2021, 9(8):1717.doi: 10.3390/microorganisms9081717.
URL
|
[10] |
Yair R, Allen M S. Short communication: Short-term intravenous amino acid infusions as a method to detect limiting amino acids in dairy cattle diets[J]. Journal of Dairy Science, 2017, 100(11):9036-9041.doi: 10.3168/jds.2017-12844.
pmid: 28918133
|
[11] |
Derrig R G, Clark J H, Davis C L. Effect of abomasal infusion of sodium caseinate on milk yield,nitrogen utilization and amino acid nutrition of the dairy cow[J]. The Journal of Nutrition, 1974, 104(2):151-159.doi: 10.1093/jn/104.2.151.
URL
|
[12] |
Yoder P S, Huang X, Teixeira I A, Cant J P, Hanigan M D. Effects of jugular infused methionine,lysine,and histidine as a group or leucine and isoleucine as a group on production and metabolism in lactating dairy cows[J]. Journal of Dairy Science, 2020, 103(3):2387-2404.doi: 10.3168/jds.2019-17082.
pmid: 31954565
|
[13] |
Nichols K, Bannink A, Dijkstra J. Energy and nitrogen balance of dairy cattle as affected by provision of different essential amino acid profiles at the same metabolizable protein supply[J]. Journal of Dairy Science, 2019, 102(10):8963-8976.doi: 10.3168/jds.2019-16400.
pmid: 31378498
|
[14] |
Doepel L, Lapierre H. Changes in production and mammary metabolism of dairy cows in response to essential and nonessential amino acid infusions[J]. Journal of Dairy Science, 2010, 93(7):3264-3274.doi: 10.3168/jds.2009-3033.
pmid: 20630242
|
[15] |
Hisadomi S, Haruno A, Fujieda T, Sugino T, Oba M. Effects of rumen-protected glutamate supplementation during the periparturient period on digestibility,inflammation,metabolic responses,and performance in dairy cows[J]. Journal of Dairy Science, 2022, 105(4):3129-3141.doi: 10.3168/jds.2021-21357.
URL
|
[16] |
Chacher B, Zhu W, Ye J A, Wang D M, Liu J X. Effect of dietary N-carbamoylglutamate on milk production and nitrogen utilization in high-yielding dairy cows[J]. Journal of Dairy Science, 2014, 97(4):2338-2345.doi: 10.3168/jds.2013-7330.
pmid: 24485674
|
[17] |
Wu Z H, Heng J H, Tian M, Song H Q, Chen F, Guan W T, Zhang S H. Amino acid transportation,sensing and signal transduction in the mammary gland:Key molecular signalling pathways in the regulation of milk synthesis[J]. Nutrition Research Reviews, 2020, 33(2):287-297.doi: 10.1017/s0954422420000074.
URL
|
[18] |
Zhang M C, Zhao S G, Wang S S, Luo C C, Gao H N, Zheng N, Wang J Q. D-Glucose and amino acid deficiency inhibits casein synthesis through JAK2/STAT5 and AMPK/mTOR signaling pathways in mammary epithelial cells of dairy cows[J]. Journal of Dairy Science, 2018, 101(2):1737-1746.doi: 10.3168/jds.2017-12926.
pmid: 29248227
|
[19] |
Toledo M Z, Stangaferro M L, Gennari R S, Barletta R V, Perez M M, Wijma R, Sitko E M, Granados G, Masello M, Van Amburgh M E, Luchini D, Giordano J O, Shaver R D, Wiltbank M C. Effects of feeding rumen-protected methionine pre-and postpartum in multiparous Holstein cows:Lactation performance and plasma amino acid concentrations[J]. Journal of Dairy Science, 2021, 104(7):7583-7603.doi: 10.3168/jds.2020-19021.
URL
|
[20] |
曹涵文, 张成福, 信金伟, 朱勇, 张强, 姜辉, 次旦央吉, 鲜莉莉, 陈晓英. 过瘤胃赖氨酸和过瘤胃蛋氨酸对母牦牛泌乳性能及犊牛生长性能的影响[J]. 动物营养学报, 2021, 33(11):6257-6265.doi: 10.3969/j.issn.1006-267x.2021.11.026.
|
|
Cao H W, Zhang C F, Xin J W, Zhu Y, Zhang Q, Jiang H, Ci D, Xian L L, Chen X Y. Effects of rumen-protected lysine and rumen-protected methionine on lactation performance of female yaks and growth performance of calves[J]. Chinese Journal of Animal Nutrition, 2021, 33(11):6257-6265.
|
[21] |
Liu W, Xia F, Hanigan M D, Lin X Y, Yan Z G, White R R, Hu Z Y, Hou Q L, Wang Z H. Short-term lactation and mammary metabolism responses in lactating goats to graded removal of methionine from an intravenously infused complete amino acid mixture[J]. Journal of Dairy Science, 2019, 102(5):4094-4104.doi: 10.3168/jds.2018-15643.
pmid: 30827543
|
[22] |
Dong X, Zhou Z, Saremi B, Helmbrecht A, Wang Z, Loor J J. Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe,Lys:Thr,Lys:His,and Lys:Val alters mammary cellular metabolites,mammalian target of rapamycin signaling,and gene transcription[J]. Journal of Dairy Science, 2018, 101(2):1708-1718.doi: 10.3168/jds.2017-13351.
pmid: 29248224
|
[23] |
Dai W T, Zhao F Q, Liu J X, Liu H Y. ASCT2 is involved in SARS-mediated β-casein synthesis of bovine mammary epithelial cells with methionine supply[J]. Journal of Agricultural and Food Chemistry, 2020, 68(46):13038-13045.doi: 10.1021/acs.jafc.9b03833.
URL
|
[24] |
Duan X Y, Lin Y, Lü H, Yang Y, Jiao H T, Hou X M. Methionine induces LAT1 expression in dairy cow mammary gland by activating the mTORC1 signaling pathway[J]. DNA and Cell Biology, 2017, 36(12):1126-1133.doi: 10.1089/dna.2017.3792.
URL
|
[25] |
Qi H, Meng C Y, Jin X, Li X Y, Li P, Gao X J. Methionine promotes milk protein and fat synthesis and cell proliferation via the SNAT2-PI3K signaling pathway in bovine mammary epithelial cells[J]. Journal of Agricultural and Food Chemistry, 2018, 66(42):11027-11033.doi: 10.1021/acs.jafc.8b04241.
pmid: 30274521
|
[26] |
|
|
Zhao Y L, Yan S M, Guo X Y, Shi B L, Chen L. Regulating effects of methionine on milk protein and lactose synthesis in bovine mammary epithelial cells[J]. Chinese Journal of Animal Nutrition, 2021, 33(4):2073-2082.
|
[27] |
Zhang Y L, Wang P, Lin S, Mercier Y, Yin H J, Song Y M, Zhang X L, Che L Q, Lin Y, Xu S Y, Feng B, Wu D, Fang Z F. mTORC1 signaling-associated protein synthesis in porcine mammary glands was regulated by the local available methionine depending on methionine sources[J]. Amino Acids, 2018, 50(1):105-115.doi: 10.1007/s00726-017-2496-0.
pmid: 28983783
|
[28] |
Fehlberg L K, Guadagnin A R, Thomas B L, Sugimoto Y, Shinzato I, Cardoso F C. Feeding rumen-protected lysine prepartum increases energy-corrected milk and milk component yields in Holstein cows during early lactation[J]. Journal of Dairy Science, 2020, 103(12):11386-11400.doi: 10.3168/jds.2020-18542.
pmid: 33041036
|
[29] |
Li Y T, Lin X Y, Liu C, Hu Z Y, Hou Q L, Wang Z H. Assessing amino acid metabolism in splanchnic tissues and mammary glands to short-term graded removal of Lys from an abomasal-infused amino acid mixture in lactating goats[J]. Frontiers in Veterinary Science, 2022, 9:929587.doi: 10.3389/fvets.2022.929587.
URL
|
[30] |
Guo C L, Li Y T, Lin X Y, Hanigan M D, Yan Z G, Hu Z Y, Hou Q L, Jiang F G, Wang Z H. Effects of graded removal of lysine from an intravenously infused amino acid mixture on lactation performance and mammary amino acid metabolism in lactating goats[J]. Journal of Dairy Science, 2017, 100(6):4552-4564.doi: 10.3168/jds.2016-11921.
pmid: 28434735
|
[31] |
Lin X J, Li S S, Zou Y X, Zhao F Q, Liu J X, Liu H Y. Lysine stimulates protein synthesis by promoting the expression of ATB0,+ and activating the mTOR pathway in bovine mammary epithelial cells[J]. The Journal of Nutrition, 2018, 148(9):1426-1433.doi: 10.1093/jn/nxy140.
URL
|
[32] |
Korhonen M, Vanhatalo A, Huhtanen P. Evaluation of isoleucine,leucine,and valine as a second-limiting amino acid for milk production in dairy cows fed grass silage diet[J]. Journal of Dairy Science, 2002, 85(6):1533-1545.doi: 10.3168/jds.s0022-0302(02)74223-9.
pmid: 12146486
|
[33] |
Tian W, Wang H R, Wu T Y, Ding L Y, Zhao R, Khas E, Wang C F, Zhang F Q, Mi F Y, Wang L, Ning L T. Milk protein responses to balanced amino acid and removal of Leucine and Arginine supplied from jugular-infused amino acid mixture in lactating dairy cows[J]. Journal of Animal Physiology and Animal Nutrition, 2017, 101(5):e278-e287.doi: 10.1111/jpn.12603.
|
[34] |
Qiu Y W, Qu B, Zhen Z, Yuan X H, Zhang L, Zhang M H. Leucine promotes milk synthesis in bovine mammary epithelial cells via the PI3K-DDX59 signaling[J]. Journal of Agricultural and Food Chemistry, 2019, 67(32):8884-8895.doi: 10.1021/acs.jafc.9b03574.
pmid: 31345029
|
[35] |
Lin Y, Duan X Y, Lü H, Yang Y, Liu Y, Gao X J, Hou X M. The effects of L-type amino acid transporter 1 on milk protein synthesis in mammary glands of dairy cows[J]. Journal of Dairy Science, 2018, 101(2):1687-1696.doi: 10.3168/jds.2017-13201.
pmid: 29224866
|
[36] |
Luo C C, Zhao S G, Dai W T, Zheng N, Wang J Q. Proteomic analyses reveal GNG12 regulates cell growth and casein synthesis by activating the Leu-mediated mTORC1 signaling pathway[J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2018, 1866(11):1092-1101.doi: 10.1016/j.bbapap.2018.08.013.
|
[37] |
Yuan X H, Zhang L, Cui Y J, Yu Y B, Gao X J, Ao J X. NCOA5 is a master regulator of amino acid-induced mTOR activation and β-casein synthesis in bovine mammary epithelial cells[J]. Biochemical and Biophysical Research Communications, 2020, 529(3):569-574.doi: 10.1016/j.bbrc.2020.05.193.
pmid: 32736675
|
[38] |
Zhao Y L, Yan S M, Chen L, Shi B L, Guo X Y. Effect of interaction between leucine and acetate on the milk protein synthesis in bovine mammary epithelial cells[J]. Animal Science Journal, 2019, 90(1):81-89.doi: 10.1111/asj.13125.
pmid: 30397989
|
[39] |
Dong X, Zhou Z, Wang L, Saremi B, Helmbrecht A, Wang Z, Loor J J. Increasing the availability of threonine,isoleucine,valine,and leucine relative to lysine while maintaining an ideal ratio of lysine:Methionine alters mammary cellular metabolites,mammalian target of rapamycin signaling,and gene transcription[J]. Journal of Dairy Science, 2018, 101(6):5502-5514.doi: 10.3168/jds.2017-13707.
pmid: 29550128
|
[40] |
Zhou Y, Zhou Z, Peng J, Loor J J. Methionine and valine activate the mammalian target of rapamycin complex 1 pathway through heterodimeric amino acid taste receptor(TAS1R1/TAS1R3)and intracellular Ca 2+ in bovine mammary epithelial cells[J]. Journal of Dairy Science, 2018, 101(12):11354-11363.doi: 10.3168/jds.2018-14461.
pmid: 30268610
|
[41] |
Kim J, Lee J E, Lee J S, Park J S, Moon J O, Lee H G. Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells[J]. Journal of Animal Science and Technology, 2020, 62(2):263-275.doi: 10.5187/jast.2020.62.2.263.
pmid: 32292933
|
[42] |
Giallongo F, Harper M T, Oh J, Lopes J C, Lapierre H, Patton R A, Parys C, Shinzato I, Hristov A N. Effects of rumen-protected methionine,lysine,and histidine on lactation performance of dairy cows[J]. Journal of Dairy Science, 2016, 99(6):4437-4452.doi: 10.3168/jds.2015-10822.
pmid: 27060815
|
[43] |
Morris D L, Kononoff P J. Effects of rumen-protected lysine and histidine on milk production and energy and nitrogen utilization in diets containing hydrolyzed feather meal fed to lactating Jersey cows[J]. Journal of Dairy Science, 2020, 103(8):7110-7123.doi: 10.3168/jds.2020-18368.
pmid: 32505393
|
[44] |
Giallongo F, Harper M T, Oh J, Parys C, Shinzato I, Hristov A N. Histidine deficiency has a negative effect on lactational performance of dairy cows[J]. Journal of Dairy Science, 2017, 100(4):2784-2800.doi: 10.3168/jds.2016-11992.
pmid: 28131569
|
[45] |
Gao H N, Hu H, Zheng N, Wang J Q. Leucine and histidine independently regulate milk protein synthesis in bovine mammary epithelial cells via mTOR signaling pathway[J]. Journal of Zhejiang University Science B, 2015, 16(6):560-572.doi: 10.1631/jzus.B1400337.
URL
|
[46] |
Kim J, Lee H G. Effects of L-histidine and sodium acetate on β-casein expression in nutrient-restricted bovine mammary epithelial cells[J]. Animals, 2021, 11(5):1444.doi: 10.3390/ani11051444.
URL
|
[47] |
Zhang X, Wang Y F, Wang M Z, Zhou G, Chen L M, Ding L Y, Bu D P, Loor J. Arginine supply impacts the expression of candidate microRNA controlling milk casein yield in bovine mammary tissue[J]. Animals, 2020, 10(5):797.doi: 10.3390/ani10050797.
URL
|
[48] |
Ma Q Q, Hu S D, Bannai M, Wu G Y. L-Arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis[J]. Amino Acids, 2018, 50(5):621-628.doi: 10.1007/s00726-018-2541-7.
pmid: 29435722
|
[49] |
Wang M Z, Xu B L, Wang H R, Bu D P, Wang J Q, Loor J J. Effects of Arginine concentration on the in vitro expression of Casein and mTOR pathway related genes in mammary epithelial cells from dairy cattle[J]. PLoS One, 2014, 9(5):e95985.doi: 10.1371/journal.pone.0095985.
URL
|
[50] |
Doepel L, Hewage I I, Lapierre H. Milk protein yield and mammary metabolism are affected by phenylalanine deficiency but not by threonine or tryptophan deficiency[J]. Journal of Dairy Science, 2016, 99(4):3144-3156.doi: 10.3168/jds.2015-10320.
pmid: 26851853
|
[51] |
Crompton L A, McKnight L L, Reynolds C K, Mills J A N, Ellis J L, Hanigan M D, Dijkstra J, Bequette B J, Bannink A, France J. An isotope dilution model for partitioning of phenylalanine and tyrosine uptake by the liver of lactating dairy cows[J]. Journal of Theoretical Biology, 2018, 444:100-107.doi: 10.1016/j.jtbi.2017.12.016.
pmid: 29277601
|
[52] |
Zhao K, Liu W, Lin X Y, Hu Z Y, Yan Z G, Wang Y, Shi K R, Liu G M, Wang Z H. Effects of rumen-protected methionine and other essential amino acid supplementation on milk and milk component yields in lactating Holstein cows[J]. Journal of Dairy Science, 2019, 102(9):7936-7947.doi: 10.3168/jds.2018-15703.
pmid: 31255267
|
[53] |
Prizant R L, Barash I. Negative effects of the amino acids Lys,His,and Thr on S6K1 phosphorylation in mammary epithelial cells[J]. Journal of Cellular Biochemistry, 2008, 105(4):1038-1047.doi: 10.1002/jcb.21904.
URL
|
[54] |
Conejos J R V, Ghassemi Nejad J, Kim J E, Moon J O, Lee J S, Lee H G. Supplementing with L-tryptophan increases medium protein and alters expression of genes and proteins involved in milk protein synthesis and energy metabolism in bovine mammary cells[J]. International Journal of Molecular Sciences, 2021, 22(5):2751.doi: 10.3390/ijms22052751.
URL
|
[55] |
Awawdeh M S. Rumen-protected methionine and lysine:Effects on milk production and plasma amino acids of dairy cows with reference to metabolisable protein status[J]. Journal of Dairy Research, 2016, 83(2):151-155.doi: 10.1017/s0022029916000108.
pmid: 27032457
|
[56] |
Elsaadawy S A, Wu Z H, Wang H, Hanigan M D, Bu D P. Supplementing ruminally protected lysine,methionine,or combination improved milk production in transition dairy cows[J]. Frontiers in Veterinary Science, 2022, 9:780637.doi: 10.3389/fvets.2022.780637.
URL
|
[57] |
Wang F, van Baal J, Ma L, Loor J J, Wu Z L, Dijkstra J, Bu D P. Short communication: Relationship between lysine/methionine ratios and glucose levels and their effects on casein synthesis via activation of the mechanistic target of rapamycin signaling pathway in bovine mammary epithelial cells[J]. Journal of Dairy Science, 2019, 102(9):8127-8133.doi: 10.3168/jds.2018-15916.
pmid: 31326165
|