[1] |
刘娟, 黎黎, 陆柄辰, 邓朴, 艾辛. 普通白菜种质资源耐抽薹性评价及耐抽薹种质的筛选[J]. 中国蔬菜, 2019(9):37-43.
|
|
Liu J, Li L, Lu B C, Deng P, Ai X. Evaluation on bolting tolerance of pakchoi germplasm resources and screening of bolting tolerance germplasm[J]. China Vegetables, 2019(9):37-43.
|
[2] |
doi: 10.3969/j.issn.1672-0873.2009.08.020
|
|
Zhao J F, Qin J H, Sun Y D, Luo D X, Zhu M C, Ding P. Research progress in the breeding of Chinese cabbage for bolting tolerance[J]. Chinese Horticulture Abstracts, 2009, 25(8):26,46-47.
|
[3] |
Huang F Y, Wu X T, Hou X L, Shao S X, Liu T K. Vernalization can regulate flowering time through microRNA mechanism in Brassica rapa[J]. Physiologia Plantarum, 2018, 164(2):204-215.doi: 10.1111/ppl.12692.
doi: 10.1111/ppl.12692
URL
|
[4] |
doi: 10.15904/j.cnki.hnny.2019.31.034
|
|
Li H Y, Zhai S Y. Study on the influencing factors of plant flowering period regulation[J]. Agriculture of Henan, 2019(31):38-39.
|
[5] |
doi: 10.19720/j.cnki.issn.1005-9369.1996.03.008
|
|
Ao Y S, Li S J, Chen G F, Cheng F. Effects of seed vernalization and photoperiod treatments on Chinese cabbage flower initiation and bolting[J]. Journal of Northeast Agricultural University, 1996, 27(3):250-254.
|
[6] |
doi: 10.16861/j.cnki.zggc.2021.0115
|
|
Li L, Liu J, Yang M Y, Wang S N, Ai X. Effects of low temperature vernalization and photoperiod regulation on bolting characters of pakchoi[J]. China Cucurbits and Vegetables, 2021, 34(5):45-51.
|
[7] |
doi: 10.19675/j.cnki.1006-687x.2019.06011
|
|
Liu J, Li L, Lu B C, Deng P, Ai X. Research progress on the temperature-regulated flowering of plants[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(3):713-721.
|
[8] |
doi: 10.11844/cjcb.2019.04.0026
|
|
Li Q X, Zhang L, Wang Y, Huang X X. The research progress of gibberellin on the regulation of flowering and floral organ development in plant[J]. Chinese Journal of Cell Biology, 2019, 41(4):746-758.
|
[9] |
程静之. 拟南芥IQM2参与自主途径成花调控的功能解析[D]. 广州: 广州大学, 2016.
|
|
Cheng J Z. Functional analysis of IQM2 on the autonomous pathway flowering time regulation in Arabidopsis[D]. Guangzhou: Guangzhou University, 2016.
|
[10] |
doi: 10.13610/j.cnki.1672-352x.20210706.019
|
|
Yang X L, Jia R R, Shi T T, Zhu Y Y, Yan X. Advances on molecular biology research of flowering regulation in ornamental plants[J]. Journal of Anhui Agricultural University, 2021, 48(3):344-351.
|
[11] |
Manuela D, Xu M L. Juvenile leaves or adult leaves:Determinants for vegetative phase change in flowering plants[J]. International Journal of Molecular Sciences, 2020, 21(24):9753.doi: 10.3390/ijms21249753.
doi: 10.3390/ijms21249753
URL
|
[12] |
doi: 10.16515/j.cnki.32-1722/n.2007.03.006
|
|
Luo Y W, Xie W H, Ma K. Hormones and flower-bud differentiation of fruit trees[J]. Journal of Jinling Institute of Technology, 2007, 23(3):70-74.
|
[13] |
Zaccai M, Ackerman R, Genis O, Riov J, Zik M. The bent peduncle phenomenon in roses is a developmental process involving auxin[J]. Plant Science, 2009, 176(6):736-743.doi: 10.1016/j.plantsci.2009.02.014.
doi: 10.1016/j.plantsci.2009.02.014
URL
|
[14] |
Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants[J]. Journal of Experimental Botany, 2012, 63(8):2853-2872.doi: 10.1093/jxb/ers091.
doi: 10.1093/jxb/ers091
pmid: 22447967
|
[15] |
Strader L C, Bartel B. A new path to auxin[J]. Nature Chemical Biology, 2008, 4(6):337-339.doi: 10.1038/nchembio0608-337.
doi: 10.1038/nchembio0608-337
pmid: 18488010
|
[16] |
Chen S X, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen C E, Hansen C H, Rasmussen H, Pickett J A, Halkier B A. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis[J]. The Plant Journal, 2003, 33(5):923-937.doi: 10.1046/j.1365-313x.2003.01679.x.
doi: 10.1046/j.1365-313x.2003.01679.x
URL
|
[17] |
doi: 10.7606/j.issn.1000-4025.2018.10.1809
|
|
Qu X Y, Qin M M, Zhao G H, Zhang T Y, Hu X Y, Li T. Cloning and expression analysis of IiCYP79F1 gene from Isatis indigotica fort[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(10):1809-1816.
|
[18] |
doi: 10.3969/j.issn.1000-4025.2013.06.003
|
|
Song A N, Cheng W C, Liu C X, Zhao Y, Wang M L. Molecular cloning and expression analysis of BnCYP79B1 gene from Brassica napus L.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(6):1085-1090.
|
[19] |
doi: 10.3969/j.issn.1002-2481.2020.06.03
|
|
Ren Y H, Wang Y L, Zhao R, Tian G Q, Yan J J, Li R. Cloning and bioinformatics analysis of CYP3001U15 gene in Pardosa astrigera(Araneae:Lycosidae)[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(6):842-846.
|
[20] |
doi: 10.3969/j.issn.1002-2481.2021.05.03
|
|
Han H, Wang B L, Li E, Hu J, Ma R Y, Gao L L, Guo Y Q. Cloning and expression analysis of cytochrome P450 CYP6AE123 gene in Grapholita molesta(busck)[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(5):539-544.
|
[21] |
doi: 10.3724/SP.J.1259.2012.00292
|
|
Wang J L, Liu D C, Guo X L, Zhang A M. Research advances in auxin biosynthesis[J]. Chinese Bulletin of Botany, 2012, 47(3):292-301.
|
[22] |
doi: 10.15889/j.issn.1002-1302.2020.14.008
|
|
Sun X L, Zang Y X, Xu Y K, Xu S S. Research progress on function of CYP79B2/B3 gene in metabolism of indoles sulfides and IAA[J]. Jiangsu Agricultural Sciences, 2020, 48(14):50-54.
|
[23] |
Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y D, Kamiya Y, Kasahara H. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13):5430-5435.doi: 10.1073/pnas.0811226106.
doi: 10.1073/pnas.0811226106
pmid: 19279202
|
[24] |
Rapparini F, Tam Y Y, Cohen J D, Slovin J P. Indole-3-acetic acid metabolism in Lemna gibba undergoes dynamic changes in response to growth temperature[J]. Plant Physiology, 2002, 128(4):1410-1416.doi: 10.1104/pp.011005.
doi: 10.1104/pp.011005
URL
|
[25] |
doi: 10.27756/d.cnki.gzjlx.2019.000297
|
|
Sun X L. Study on the overexpression of BrCYP79B2/B3 and transcriptomic analysis in transgenic Arabidopsis[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2019.
|
[26] |
Hull A K, Vij R, Celenza J L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(5):2379-2384.doi: 10.1073/pnas.040569997.
doi: 10.1073/pnas.040569997
pmid: 10681464
|
[27] |
doi: 10.7668/hbnxb.201751719
|
|
Hu X Y, Qu X Y, Wu G G, Qin M M, Liu R, Gao T E, Li T. Cloning and expression analysis of IiCYP79B2 from Isatis indigotica fort[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(5):23-29.
|
[28] |
徐义康. 大白菜CYP79B2/B3在拟南芥中的表达特性分析[D]. 杭州: 浙江农林大学, 2018.
|
|
Xu Y K. Expression pattern analysis of CYP79B2/B3 genes from Chinese cabbage in transgenic Arabidopsis[D]. Hangzhou: Zhejiang A&F University, 2018.
|
[29] |
张冰冰, 刘霞, 秦梦凡, 梁峰豪, 张燕, 左凯峰, 郭娜, 马宁, 黄镇, 徐爱遐. 甘蓝型油菜开花时间的遗传分析及相关分子标记[J]. 华北农学报, 2019, 34(6):39-46.doi: 10.7668/hbnxb.201751611.
doi: 10.7668/hbnxb.201751611
|
|
Zhang B B, Liu X, Qin M F, Liang F H, Zhang Y, Zuo K F, Guo N, Ma N, Huang Z, Xu A X. Genetic analysis and related molecular markers of flowering time in Brassica napus L.[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(6):39-46.
|
[30] |
doi: 10.7668/hbnxb.201750858
|
|
Liu X Z, Li Y F. Cloning and expression analysis of auxin polar transport PIN gene 1(CbPIN1)in Capsella bursa-pastoris[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1):26-32.
|
[31] |
doi: 10.7668/hbnxb.2009.06.039
|
|
Liu R Y, Hou L P, Wang L, Li M L. Effect analysis of low temperature promoting flowering in Chinese cabbage[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(6):193-197.
|
[32] |
doi: 10.16420/j.issn.0513-353x.2018-0496
|
|
Wang X Q, Li S N, Zhang J L, Wang Z M, Wei D Y, Tang Q L. Progress in regulation mechanism of inflorescence development in Arabidopsis and cruciferous vegetables[J]. Acta Horticulturae Sinica, 2018, 45(9):1727-1738.
|
[33] |
doi: 10.3969/j.issn.2095-5952.2015.01.008
|
|
Xu Z P, Wan T, Cai P, Meng C, Li Q Q. The influence of flower hormone dynamic and into flowers in Artemisia frigida in different habitats[J]. Grassland and Prataculture, 2015, 27(1):28-34.
|
[34] |
doi: 10.27662/d.cnki.gznlc.2020.000525
|
|
Deng Q E. Response mechanism of Camellia oleifera floral organ development to adverse circumstances and regulation technique of plant growth regulator[D]. Changsha: Central South University of Forestry & Technology, 2020.
|