[1] |
Ali M, Baek K H, Lee S Y, Kim H C, Park J Y, Jo C, Jung J H, Park H C, Nam K C. Comparative meat qualities of boston butt muscles ( M. subscapularis) from different pig breeds available in Korean market[J]. Food Science of Animal Resources, 2021, 41(1):71-84. doi: 10.5851/kosfa.2020.e79.
doi: 10.5851/kosfa.2020.e79
URL
|
[2] |
Gaballa A, Guariglia-Oropeza V, Wiedmann M, Boor K J. Cross talk between SigB and PrfA in Listeria monocytogenes facilitates transitions between extra-and intracellular environments[J]. Microbiology and Molecular Biology Reviews, 2019, 83(4):e00034-e00019.doi: 10.1128/mmbr.00034-19.
doi: 10.1128/mmbr.00034-19
|
[3] |
简晨晨, 邵俊红, 白俊艳, 冀祥, 韩志洪, 王龙威, 崔晗晗, 彭彬, 杨浩杰, 王淑艳. 影响新美系长白猪初生重的因素分析[J]. 当代畜禽养殖业, 2021(1):42-43.doi: 10.14070/j.cnki.15-1150.2021.01.019.
doi: 10.14070/j.cnki.15-1150.2021.01.019
|
|
Jian C C, Shao J H, Bai J Y, Ji X, Han Z H, Wang L W, Cui H H, Peng B, Yang H J, Wang S Y. Analysis of factors affecting the birth weight of Xinmei Landrace pigs[J]. Modern Animal Husbandry, 2021(1):42-43.
|
[4] |
王志秀. 基于转录组和蛋白组数据鉴定猪肌肉生长和脂肪沉积相关的基因[D]. 北京: 中国农业大学, 2017.
|
|
Wang Z X. Identification of genes related to muscle growth and lipid deposition from transcriptomic and proteomic profiles of pig[D]. Beijing: China Agricultural University, 2017.
|
[5] |
Xu Y J, Qian H, Feng X T, Xiong Y Z, Lei M G, Ren Z Q, Zuo B, Xu D Q, Ma Y, Yuan H. Differential proteome and transcriptome analysis of porcine skeletal muscle during development[J]. Journal of Proteomics, 2012, 75(7):2093-2108.doi: 10.1016/j.jprot.2012.01.013.
doi: 10.1016/j.jprot.2012.01.013
pmid: 22270015
|
[6] |
Tarazona S, Furi-Tarí P, Turrà D, Pietro A D, Nueda M J, Ferrer A, Conesa A. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package[J]. Nucleic Acids Research, 2015, 43(21):e140.doi: 10.1093/nar/gkv711.
doi: 10.1093/nar/gkv711
|
[7] |
李江华. GB/T 17236—2008《生猪屠宰操作规程》的主要内容[J]. 肉类研究, 2014, 28(7):3-4.
|
|
Li J H. The main content of GB/T 17236—2008 "Operation Rules for Slaughtering Live Pigs"[J]. Meat Research,2014, 28(7):3-4.
|
[8] |
Bolger A M, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.doi: 10.1093/bioinformatics/btu170.
doi: 10.1093/bioinformatics/btu170
URL
|
[9] |
de Sena Brandine G, Smith A D. Falco:high-speed FastQC emulation for quality control of sequencing data[J]. F1000Res, 2019, 8:1874.doi: 10.12688/f1000research.21142.2.
doi: 10.12688/f1000research.21142.2
URL
|
[10] |
Wingett S W, Andrews S. FastQ Screen:A tool for multi-genome mapping and quality control[J]. F1000Research, 2018, 7:1338.doi: 10.12688/f1000research.15931.2.
doi: 10.12688/f1000research.15931.2
pmid: 30254741
|
[11] |
Musich R, Cadle-Davidson L, Osier M V. Comparison of short-read sequence aligners indicates strengths and weaknesses for biologists to consider[J]. Frontiers in Plant Science, 2021, 12: 657240. doi: 10.3389/fpls.2021.657240.
doi: 10.3389/fpls.2021.657240
URL
|
[12] |
Sarantopoulou D, Brooks T G, Nayak S, Mrcˇela A, Lahens N F, Grant G R. Comparative evaluation of full-length isoform quantification from RNA-Seq[J]. BMC Bioinformatics, 2021, 22(1): 266. doi: 10.1186/s12859-021-04198-1.
doi: 10.1186/s12859-021-04198-1
pmid: 34034652
|
[13] |
Putri G H, Anders S, Pyl P T, Pimanda J E, Zanini F. Analysing high-throughput sequencing data in Python with HTSeq 2.0[J]. Bioinformatics, 2022, 38(10): 2943-2945. doi: 10.1093/bioinformatics/btac166.
doi: 10.1093/bioinformatics/btac166
URL
|
[14] |
Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq:A matter of depth[J]. Genome Res, 2011, 21(12):2213-2223.doi: 10.1101/gr.124321.111.
doi: 10.1101/gr.124321.111
pmid: 21903743
|
[15] |
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms[J]. Nucleic Acids Research, 2020, 49(D1): D545-D551. doi: 10.1093/nar/gkaa970.
doi: 10.1093/nar/gkaa970
URL
|
[16] |
Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal J F M. The PTEN/PI3K/AKT signalling pathway in cancer,therapeutic implications[J]. Current Cancer Drug Targets, 2008, 8(3):187-198.doi: 10.2174/156800908784293659.
doi: 10.2174/156800908784293659
URL
|
[17] |
He X P, Xu X W, Zhao S H, Fan B, Yu M, Zhu M J, Li C C, Peng Z Z, Liu B. Investigation of Lpin1 as a candidate gene for fat deposition in pigs[J]. Molecular Biology Reports, 2009, 36(5):1175-1180.doi: 10.1007/s11033-008-9294-4.
doi: 10.1007/s11033-008-9294-4
pmid: 18581256
|
[18] |
doi: 10.3969/j.issn.2095-0616.2018.15.011
|
|
Hu B Y, Huang Y, Yang M H, Pan H B, Zhao S M. Research on the regulation of lipid metabolism by PLIN[J]. China Medicine and Pharmacy, 2018, 8(15):40-43.
|
[19] |
Davoli R, Gandolfi G, Braglia S, Comella M, Zambonelli P, Buttazzoni L, Russo V. New SNP of the porcine Perilipin 2( PLIN2)gene,association with carcass traits and expression analysis in skeletal muscle[J]. Molecular Biology Reports, 2011, 38(3):1575-1583.doi: 10.1007/s11033-010-0266-0.
doi: 10.1007/s11033-010-0266-0
URL
|
[20] |
宋文莉, 田雨, 王宪娥, 张立, 徐莉, 释栋, 冯向辉, 路瑞芳, 陈智滨, 孟焕新. FADS1 rs174537基因多态性与侵袭性牙周炎患者血清蛋白的相关性[J]. 北京大学学报(医学版), 2016, 48(1):10-15.doi: 10.3969/j.issn.1671-167X.2016.01.003.
doi: 10.3969/j.issn.1671-167X.2016.01.003
|
|
Song W L, Tian Y, Wang X E, Zhang L, Xu L, Shi D, Feng X H, Lu R F, Chen Z B, Meng H X. Association between FADS1 rs174537 polymorphism and serum proteins in patients with aggressive periodontitis[J]. Journal of Peking University (Health Sciences), 2016, 48(1):10-15.
|
[21] |
Koletzko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, Simmer K, Heinrich J, Demmelmair H. FADS1 and FADS2 polymorphisms modulate fatty acid metabolism and dietary impact on health[J]. Annual Review of Nutrition, 2019, 39:21-44. doi: 10.1146/annurev-nutr-082018-124250.
doi: 10.1146/annurev-nutr-082018-124250
URL
|
[22] |
Tian J B, Lou J, Cai Y M, Rao M L, Lu Z Q, Zhu Y, Zou D Y, Peng X T, Wang H X, Zhang M, Niu S Y, Li Y, Zhong R, Chang J, Miao X P. Risk SNP-mediated enhancer-promoter interaction drives colorectal cancer through both FADS2 and AP002754.2[J]. Cancer Research, 2020, 80(9): 1804-1818. doi: 10.1158/0008-5472.can-19-2389.
doi: 10.1158/0008-5472.can-19-2389
URL
|
[23] |
Moradi S, Mirzaei K, Maghbooli Z, Abdurahman A A, Keshavarz S A. Variants in the PPARGC1A gene may influence the effect of fat intake on resting metabolic rate in obese women[J]. Lipids, 2018, 53(3): 291-300. doi: 10.1002/lipd.12024.
doi: 10.1002/lipd.12024
URL
|
[24] |
Tan H W S, Anjum B, Shen H M, Ghosh S, Yen P M, Sinha R A. Lysosomal inhibition attenuates peroxisomal gene transcription via suppression of PPARA and PPARGC1A levels[J]. Autophagy, 2019, 15(8): 1455-1459. doi: 10.1080/15548627.2019.1609847.
doi: 10.1080/15548627.2019.1609847
pmid: 31032705
|
[25] |
Gandolfi G, Cinar M U, Ponsuksili S, Wimmers K, Tesfaye D, Looft C, Jüngst H, Tholen E, Phatsara C, Schellander K, Davoli R. Association of PPARGC1A and CAPNS1 gene polymorphisms and expression with meat quality traits in pigs[J]. Meat Science, 2011, 89(4):478-485.doi: 10.1016/j.meatsci.2011.05.015.
doi: 10.1016/j.meatsci.2011.05.015
pmid: 21680104
|
[26] |
Mazur I I, Drozdovska S, Andrieieva O, Vinnichuk Y, Polishchuk A, Dosenko V, Andreev I, Pickering C, Ahmetov I I. PPARGC1A gene polymorphism is associated with exercise-induced fat loss[J]. Molecular Biology Reports, 2020, 47(10): 7451-7457. doi: 10.1007/s11033-020-05801-z.
doi: 10.1007/s11033-020-05801-z
URL
|
[27] |
Jing L, Hou Y, Wu H, Miao Y X, Li X Y, Cao J H, Brameld J M, Parr T, Zhao S H. Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs[J]. Scientific Reports, 2015, 5:11953.doi: 10.1038/srep11953.
doi: 10.1038/srep11953
pmid: 26150313
|
[28] |
Jung H S, Shimizu-Albergine M, Shen X, Kramer F, Shao D, Vivekanandan-Giri A, Pennathur S, Tian R, Kanter J E, Bornfeldt K E. TNF-α induces acyl-CoA synthetase 3 to promote lipid droplet formation in human endothelial cells[J]. Journal of Lipid Research, 2020, 61(1): 33-44. doi: 10.1194/jlr.ra119000256.
doi: 10.1194/jlr.RA119000256
pmid: 31722970
|
[29] |
Zhao Z D, Abbas Raza S H, Tian H S, Shi B G, Luo Y Z, Wang J Q, Liu X, Li S B, Bai Y B, Hu J. Effects of overexpression of ACSL1 gene on the synthesis of unsaturated fatty acids in adipocytes of bovine[J]. Arch Biochem Biophys, 2020, 695: 108648. doi: 10.1016/j.abb.2020.108648.
doi: 10.1016/j.abb.2020.108648
URL
|
[30] |
Zhang J, Zhang Y, Gong H, Cui L, Huang T, Ai H, Ren J, Huang L, Yang B. Genetic mapping using 1.4M SNP array refined loci for fatty acid composition traits in Chinese Erhualian and Bamaxiang pigs[J]. Journal of Animal Breeding and Genetics, 2017, 134(6):472-483.doi: 10.1111/jbg.12297.
doi: 10.1111/jbg.12297
pmid: 28940847
|