[1] Yang Y Y, Kim J G. The optimal balance between sexual and asexual reproduction in variable environments:a systematic review[J]. Journal of Ecology and Environment, 2016, 40(1):12-18. doi:10.1186/s41610-016-0013-0. [2] Dong M, Yu F H, Alpert P. Ecological consequences of plant clonality[J]. Annals of Botany, 2014, 114(2):367-368. doi:10.1093/aob/mcu137. [3] 王沫竹,董必成,李红丽,于飞海.根茎型植物扁秆荆三棱对光照强度和养分水平的生长响应及资源分配策略[J].生态学报, 2016,36(24):8091-8101. doi:10.5846/stxb201505060938. Wang M Z, Dong B C, Li H L, Yu F H. Growth and biomass allocation responses to light intensity and nutrient availability in the rhizomatous herb Bolboschoenus planiculmis[J]. Acta Ecologica Sinica, 2016, 36(24):8091-8101. [4] Kraehmer H, Jabran K, Mennan H,Chauhan B S. Global distribution of rice weeds-A review[J]. Crop Protection, 2016, 80:73-86. doi:10.1016/j.cropro.2015.10.027. [5] 朱新云,施慎年,吴佳文.水稻旱直播田47%氯吡丙异可湿性粉剂除草效果及安全性[J].杂草学报, 2016, 34(4):39-42. doi:10.19588/j.issn.1003-935x.2016.04.008. Zhu X Y, Shi S N, Wu J W.Efficacy and selectivity of halosulfuron-Methyl pretilachlor isoproturon 47% WP in dry seeded rice fields[J]. Journal of Weed Science, 2016, 34(4):39-42. [6] 陈宇博,赖朝晖,许燎原,金彬,赵丽隐,刘桂良.直播早稻杂草发生规律研究[J].农学学报, 2015, 5(8):27-30. doi:10.11923/j.issn.2095-4050.cjas14110012. Chen Y B, Lai C H, Xu L Y, Jin B, Zhao L Y, Liu G L. Regularity of weeds in direct seeding early rice fields[J].Journal of Agriculture, 2015,5(8):27-30. [7] 钱希.扁秆藨草的生物学特性及防治研究[J].植物生态学报, 1988, 12(3):205-215. Qian X. A study on biology of flat stalk bulrush and its control[J]. Chinese Journal of Plant Ecology, 1988, 12(3):205-215. [8] 康学耕,唐恩全,张恕茗,王艳秋,高君.关于扁杆藨草种群疯长的研究[J].吉林农业大学学报, 1993, 15(3):32-36. Kang X G, Tang E Q, Zhang S M, Wang Y Q, Gao J. A study on intrinsic rate of natural increase of Scirpus planiculmis Fr. Schmidt[J]. Journal of Jilin Agricultural University, 1993, 15(3):32-36. [9] Liu B, Jiang M, Tong S Z, Zhang W G, Wu H T, Liu Y, Lu X G. Differential flooding impacts on Echinochloa caudata and Scirpus planiculmis:implications for weed control in wetlands[J]. Wetlands, 2016, 36(5):979-984. doi:10.1007/s13157-016-0805-0. [10] Wollstonecroft M M, Ellis P R, Hillman G C, Fuller D Q. Advances in plant food processing in the Near Eastern Epipalaeolithic and implications for improved edibility and nutrient bioaccessibility:an experimental assessment of Bolboschoenus maritimus(L.) Palla (sea club-rush)[J]. Vegetation History and Archaeobotany, 2008,17(S1):19-27. doi:10.1007/s00334-008-0162-x. [11] Zhao L Y, Jiang J H, Chen C H, Zhan S E, Yang J Y, Shao Y. Efficiency and mechanism of the phytoremediation of decabromodiphenyl ether-contaminated sediments by aquatic macrophyte Scirpus validus[J]. Environmental Science and Pollution Research, 2017, 24(14):12949-12962. doi:10.1007/s11356-017-8900-1. [12] Chen T R, Liu X Y, Zhang X Y, Hou Y Y, Chen X, Tao K Y. Enhanced Scirpus triqueter phytoremediation of pyrene and lead co-contaminated soil with alkyl polyglucoside and nitrilotriacetic acid combined application[J]. Journal of Soils and Sediments, 2016, 16(8):2090-2096. doi:10.1007/s11368-016-1394-5. [13] Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdisciplinary Reviews:RNA, 2017, 8(1):1364. doi:10.1002/wrna.1364. [14] Todd E V, Black M A, Gemmell N J. The power and promise of RNA-seq in ecology and evolution[J]. Molecular Ecology, 2016, 25(6):1224-1241. doi:10.1111/mec.13526. [15] Chen R S, Cheng Y F, Han S Y, Handel B V, Dong L, Li X M, Xie X Q. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar-sea rice 86[J]. BMC Genomics, 2017, 18(1):655-678. doi:10.1186/s12864-017-4037-3. [16] 邵彩虹,李瑶,钱银飞,陈金,陈先茂,关贤交,刘光荣,彭春瑞,邱才飞.氮素胁迫对水稻根系影响的转录组分析[J].华北农学报, 2018, 33(1):168-175. doi:10.7668/hbnxb.2018.01.025. Shao C H, Li Y, Qian Y F, Chen J, Chen X M, Guan X J, Liu G R, Peng C R, Qiu C F. Transcriptional analysis of rice root under nitrogen deficiency[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1):168-175. [17] Ramos M J N, Coito J L, Fino J, Cunha J, Silva H, de Almeida P G, Costa M M R, Amâncio S, Paulo O S, Rocheta M. Deep analysis of wild vitis flower transcriptome reveals unexplored genome regions associated with sex specification[J]. Plant Molecular Biology,2017, 93(1-2):151-170. doi:10.1007/s11103-016-0553-9. [18] Li X, Sun X D, Yang S H, Qian M, Yang Y Q, Yang Y P. Molecular cloning and functional analysis of a novel phytoglobin gene from the alpine plant Stipa purpurea[J]. Plant Ecology&Diversity, 2017, 10(1):17-27. doi:10.1080/17550874.2017.1302998. [19] 姜福星,杨丽娟,高素萍,高顺,陈其兵.碰碰香叶片的转录组测序分析[J].分子植物育种, 2015,13(10):2310-2319. doi:10.13271/j.mpb.013.002310. Jiang F X, Yang L J, Gao S P, Gao S, Chen Q B. Analysis on transcriptome sequenced of Plectranthus tomentosaleaf[J]. Molecular Plant Breeding, 2015,13(10):2310-2319. [20] 袁卫东,陆娜,陈青,宋吉玲,王伟科.灰树花子实体转录组测序和分析[J].复旦学报(自然科学版), 2015, 54(5):673-678. doi:10.15943/j.cnki.fdxb-jns.2015.05.019. Yuan W D, Lu N, Chen Q, Song J L, Wang W K. Analysis of transcriptome sequenced of Maitake[J]. Journal of Fudan University (Natural Science), 2015, 54(5):673-678. [21] Karthikeyan P G, George S, Chithrima C R. Nutritive value and safety of greater club rush as livestock feed[J]. Indian Journal of Weed Science, 2017, 49(1):75-78. doi:10.5958/0974-8164.2017.00018.1. [22] Ning Y, Zhang Z X, Cui L J, Zou C L. Adaptive significance of and factors affecting plasticity of biomass allocation and rhizome morphology:a case study of the clonal plant Scirpus planiculmis(Cyperaceae)[J]. Polish Journal of Ecology, 2014, 62(1):77-88. doi:10.3161/104.062.0108. [23] 王乃姗,张曼胤,崔丽娟,马牧源,颜亮,穆泳林,秦鹏.河北衡水湖湿地汞污染现状及生态风险评价[J].环境科学, 2016, 37(5):1754-1762. doi:10.13227/j.hjkx.2016.05.020. Wang N S, Zhang M Y, Cui L J, Ma M Y, Yan L, Mu Y L, Qin P.Contamination and ecological risk assessment of mercury in Hengshuihu wetland, Hebei Province[J]. Environmental Science, 2016, 37(5):1754-1762. [24] 刘玉林,李伟,张志翔.基于高通量测序的辽东栎转录组学研究[J].生物技术通报, 2014(7):119-124. doi:10.13560/j.cnki.biotech.bull.1985.2014.07.028. Liu Y L, Li W, Zhang Z X. Transcriptome analysis for Quercus liaotungensis Koidz. based on high-throughput sequencing technology[J]. Biotechnology Bulletin, 2014(7):119-124. [25] Zhou Y J, Gao F, Liu R, Feng J C, Li H J. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genomics, 2012, 13(1):266-278. doi:10.1186/1471-2164-13-266. [26] He C Y, Cui K, Zhang J G, Duan A G, Zeng Y F. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo[J]. BMC Plant Biology, 2013, 13(1):119. doi:10.1186/1471-2229-13-119. [27] Cui K, Wang H Y, Liao S X, Tang Q, Li L, Cui Y Z, He Y. Transcriptome sequencing and analysis for culm elongation of the world's largest bamboo (Dendrocalamus sinicus)[J]. PLoS One, 2016, 11(6):e157362. doi:10.1371/journal.pone.0157362. [28] 陈春旭,李琦,郭元新,杜传来,丁志刚.基于高通量测序的发芽苦荞转录组学研究[J].生物技术通报, 2016, 32(7):40-47. doi:10.13560/j.cnki.biotech.bull.1985.2016.07.006. Chen C X, Li Q, Guo Y X, Du C L, Ding Z G. Transcriptome analysis of germinated tartary buckwheat based on high-throughput sequencing technology[J]. Biotechnology Bulletin, 2016, 32(7):40-47. [29] Unamba C I N, Nag A, Sharma R K. Next generation sequencing technologies:the doorway to the unexplored genomics of non-model plants[J]. Frontiers in Plant Science, 2015, 6(185):1074-1085. doi:10.3389/fpls.2015.01074. [30] Loke K K, Rahnamaie-Tajadod R, Yeoh C C, Goh H H, Mohamed-Hussein Z A, Noor N M, Zainal Z, Ismail I. RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus[J]. Genomics Data, 2016, 7:12-13. doi:10.1016/j.gdata.2015.11.003. [31] 魏强,丁雨龙.矢竹地下茎转录组测序及节间生长相关基因表达分析[J].南京林业大学学报(自然科学版), 2017, 41(5):42-48. doi:10.3969/j.issn.1000-2006.201601006. Wei Q, Ding Y L. Transcriptome sequencing, de novo assembly and expression analysis of several genes related to internode development in Pseudosasa japonica[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5):42-48. [32] Jeilani Y A, Williams P N, Walton S, Nguyen M T. Unified reaction pathways for the prebiotic formation of RNA and DNA nucleobases[J]. Physical Chemistry Chemical Physics, 2016, 18(30):20177-20188. doi:10.1039/C6CP02686A. [33] Chen X, Xia J, Xia Z Q, Zhang H F, Zeng C Y, Lu C, Zhang W X, Wang W Q. Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor[J]. BMC Plant Biology, 2015, 15(1):33-45. doi:10.1186/s12870-014-0355-7. [34] Ferreira S J, Senning M, Sonnewald S, Keβling P M, Goldstein R, Sonnewald U. Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis[J]. BMC Genomics, 2010, 11(1):93-105. doi:10.1186/1471-2164-11-93. [35] Baralle F E, Giudice J. Alternative splicing as a regulator of development and tissue identity[J]. Nature Reviews Molecular Cell Biology, 2017, 18(7):437-451. doi:10.1038/nrm.2017.27. |