[1] |
Hassaan M A, El Nemr A. Pesticides pollution:Classifications,human health impact,extraction and treatment techniques[J]. The Egyptian Journal of Aquatic Research, 2020, 46(3):207-220. doi: 10.1016/j.ejar.2020.08.007.
doi: 10.1016/j.ejar.2020.08.007
URL
|
[2] |
Kiefer B, Riemann M, Büche C, Kassemeyer H H, Nick P. The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola[J]. Planta, 2002, 215(3):387-393. doi: 10.1007/s00425-002-0760-2.
doi: 10.1007/s00425-002-0760-2
pmid: 12111219
|
[3] |
李卓, 周婷婷, 杨超, 李映程, 孙琦, 任毓忠, 赵宝龙, 张莉, 李国英. 葡萄霜霉病菌侵染抗病和感病品种过程的组织学观察[J]. 园艺学报, 2017, 44(5):861-870. doi: 10.16420/j.issn.0513-353x.2016-0673.
doi: 10.16420/j.issn.0513-353x.2016-0673
|
|
Li Z, Zhou T T, Yang C, Li Y C, Sun Q, Ren Y Z, Zhao B L, Zhang L, Li G Y. Histological studies on the infection processs of the grape downy mildew between susceptible cultivar and resistant cultivar[J]. Acta Horticulturae Sinica, 2017, 44(5):861-870.
|
[4] |
doi: 10.15889/j.issn.1002-1302.2015.11.051
|
|
Liu H N, Yao X W. Relationship between resistance to grape downy mildew and physiological and biochemical indexes of grape leaves[J]. Jiangsu Agricultural Science, 2015, 43(11):180-182.
|
[5] |
王国英, 贺普超. 葡萄霜霉病抗性鉴定方法的研究[C]. 葡萄研究论文选集, 杨凌: 中国园艺学会, 2003:109-114.
|
|
Wang G Y, He P C. Study on the identification method of grape downy mildew resistance[C]. Selected papers on grape research, Yangling: Chinese Society for Horticultural Science, 2003:109-114.
|
[6] |
Bernoux M, Ellis J G, Dodds P N. New insights in plant immunity signaling activation[J]. Current Opinion in Plant Biology, 2011, 14(5):512-518. doi: 10.1016/j.pbi.2011.05.005.
doi: 10.1016/j.pbi.2011.05.005
pmid: 21723182
|
[7] |
江珍红. 植物免疫响应的大规模转录组学分析[D]. 北京: 中国农业大学, 2017.
|
|
Jiang Z H. Large-scale transcriptional data analyses of plant immune responses[D]. Beijing: China Agricultural University, 2017.
|
[8] |
Dufour M C, Corio-Costet M F. Variability in the sensitivity of biotrophic grapevine pathogens( Erysiphe necator and Plasmopara viticola)to acibenzolar-S methyl and two phosphonates[J]. European Journal of Plant Pathology, 2013, 136(2):247-259. doi: 10.1007/s10658-012-0159-2.
doi: 10.1007/s10658-012-0159-2
URL
|
[9] |
Banani H, Roatti B, Ezzahi B, Giovannini O, Gessler G, Pertot I, Perazzolli M. Characterization of resistance mechanisms activated by Trichoderma harzianum T39 and benzothiadiazole to downy mildew in different grapevine cultivars[J]. Plant Pathology, 2014, 63(2):334-343. doi: 10.1111/ppa.12089.
doi: 10.1111/ppa.12089
URL
|
[10] |
Guerreiro A, Figueiredo J, Sousa Silva M, Figueiredo A. Linking jasmonic acid to grapevine resistance against the biotrophic oomycete Plasmopara viticola[J]. Frontiers in Plant Science, 2016, 7:565. doi: 10.3389/fpls.2016.00565.
doi: 10.3389/fpls.2016.00565
pmid: 27200038
|
[11] |
Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet M F, Mérillon J M. Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator[J]. Journal of Agricultural and Food Chemistry, 2006, 54(24):9119-9125. doi: 10.1021/jf0618022.
doi: 10.1021/jf0618022
pmid: 17117799
|
[12] |
Bellée A, Cluzet S, Dufour M C, Mérillon J M, Corio-Costet M F. Comparison of the impact of two molecules on plant defense and on efficacy against Botrytis cinerea in the vineyard:A plant defense inducer(benzothiadiazole)and a fungicide(pyrimethanil)[J]. Journal of Agricultural and Food Chemistry, 2018, 66(13):3338-3350. doi: 10.1021/acs.jafc.7b05725.
doi: 10.1021/acs.jafc.7b05725
URL
|
[13] |
Pieterse D, Groenewald P, Bradshaw D, Burger E H, Rohde J, Reagon G. Death certificates:Let's get it right![J]. South African Medical Journal, 2009, 99(9):643-644.
|
[14] |
程保平. 大豆疫霉效应分子Avh331抑制MAPK介导的植物防卫反应促进病原菌侵染[D]. 南京: 南京农业大学, 2011.
|
|
Cheng B P. Phytophthora sojae effector Avh331 could suppress mapk based plant defense signal pathway[D]. Nanjing: Nanjing Agricultural University, 2011.
|
[15] |
Chinchilla D, Boller T, Robatzek S. Flagellin signalling in plant immunity[M]. Advances in Experimental Medicine and Biology, New York: Springer New York, 2007:358-371. doi: 10.1007/978-0-387-71767-8_25.
doi: 10.1007/978-0-387-71767-8_25
|
[16] |
doi: 10.7501/j.issn.0253-2670.2018.23.024
|
|
Liu W, Wang J Y, Li M, Dong J J, He C D, Wang G B, Yu W W, Wang Y Q. Transcriptome sequencing analysis of gene expression of flavonoid biosynthesis in Ginkgo biloba[J]. Chinese Traditional and Herbal Drugs, 2018, 49(23):5633-5639.
|
[17] |
刘青. 哈茨木霉菌拮抗辣椒疫霉的转录组学研究[D]. 贵阳: 贵州大学, 2019.
|
|
Liu Q. Transcriptome research of Trichoderma harzianum antagonized Phytophthora capsici[D]. Guiyang: Guizhou University, 2019.
|
[18] |
doi: 10.13346/j.mycosystema.210037
|
|
Zhang H, Zhou Y C, Liang Y, Zhang H Y, Li Y Q, Chen J. Research progress of the biosynthesis and regulation of the antibiotic peptaibols in Trichoderma[J]. Mycosystema, 2021, 40(8):1905-1917.
|
[19] |
Santos A P, Serra T, Figueiredo D D, Barros P, Lourenξo T, Chander S, Oliveira M M, Saibo N J M. Transcription regulation of abiotic stress responses in rice:A combined action of transcription factors and epigenetic mechanisms[J]. OMICS:A Journal of Integrative Biology, 2011, 15(12):839-857. doi: 10.1089/omi.2011.0095.
doi: 10.1089/omi.2011.0095
pmid: 22136664
|
[20] |
Raclet J B, Badouel E, Benveniste A, Caillaud B, Legay A, Passerone R. A modal interface theory for component-based design[J]. Fundamenta Informaticae, 2011, 108(1/2):119-149. doi: 10.3233/fi-2011-416.
doi: 10.3233/fi-2011-416
URL
|
[21] |
doi: 10.13414/j.cnki.zwpp.2019.05.012
|
|
Fu Q Q, Chu Y N, Wang Y J, Xu Y. Advances in research on resistance breeding of grape downy mildew[J]. Sino-Overseas Grapevine & Wine, 2019(5):69-75.
|
[22] |
Luo S L, He P C, Zhou P, Zheng X Q. Identification of molecular genetic markers tightly linked to downy mildew resistant genes in grape[J]. Acta Genetica Sinica, 2001, 28(1):76-82. doi: 10.1088/0256-307X/18/11/313.
doi: 10.1088/0256-307X/18/11/313
pmid: 11209717
|
[23] |
doi: 10.11937/bfyy.20190441
|
|
Chen Z, Wei J G, Zhao Y Z, Niu S K, Yang L L. Analysis of resistance to downy mildew in table grape varieties[J]. Northern Horticulture, 2019(20):25-30.
|
[24] |
doi: 10.7606/j.issn.1004-1389.2021.06.014
|
|
Guo J Q, Zhang X Y, Wang R H, Wang Y W, Wang Q L, Gao L L, Li Z, Wang X P. Field identification of disease resistance for downy mildew in grape varieties[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(6):914-920.
|
[25] |
doi: 10.13925/j.cnki.gsxb.20150253
|
|
Li B Y, Wang P S, Ni S S, Liu X Q, Wang Y Z. Resistance identification and biochemistry of resistance of different grape varieties to downy mildew[J]. Journal of Fruit Science, 2016, 33(2):217-223.
|
[26] |
Latijnhouwers M, de Wit P J G M, Govers F. Oomycetes and fungi:Similar weaponry to attack plants[J]. Trends in Microbiology, 2003, 11(10):462-469. doi: 10.1016/j.tim.2003.08.002.
doi: 10.1016/j.tim.2003.08.002
pmid: 14557029
|
[27] |
Gindro K, Pezet R, Viret O. Histological study of the responses of two Vitis vinifera cultivars(resistant and susceptible)to Plasmopara viticola infections[J]. Plant Physiology and Biochemistry, 2003, 41(9):846-853. doi: 10.1016/S0981-9428(03)00124-4.
doi: 10.1016/S0981-9428(03)00124-4
URL
|
[28] |
Allègre M, Daire X, Héloir M C, Trouvelot S, Mercier L, Adrian M, Pugin A. Stomatal deregulation in Plasmopara viticola-infected grapevine leaves[J]. The New Phytologist, 2007, 173(4):832-840. doi: 10.1111/j.1469-8137.2006.01959.x.
doi: 10.1111/j.1469-8137.2006.01959.x
URL
|
[29] |
Cheng Z Y, Li J F, Niu Y J, Zhang X C, Woody O Z, Xiong Y, Djonovic' S, Millet Y, Bush J, McConkey B J, Sheen J, Ausubel F M. Pathogen-secreted proteases activate a novel plant immune pathway[J]. Nature, 2015, 521(7551):213-216. doi: 10.1038/nature14243.
doi: 10.1038/nature14243
URL
|
[30] |
Raja V, Majeed U, Kang H, Andrabi K I, John R. Abiotic stress:Interplay between ROS,hormones and MAPKs[J]. Environmental and Experimental Botany, 2017, 137:142-157. doi: 10.1016/j.envexpbot.2017.02.010.
doi: 10.1016/j.envexpbot.2017.02.010
URL
|
[31] |
doi: 10.3969/j.issn.1000-1336.2001.06.025
|
|
Yang Y, Li X Y, Li D C. Nontoxic genes of plant pathogenic bacteria and plant disease resistance[J]. Chemistry of Life, 2001, 21(6):505-507.
|
[32] |
冯琳燕. 活性氧与酚类物质互作在番木瓜(Carica papaya)果实采后抗病性中的作用[D]. 北京: 中国科学院, 2011.
|
|
Feng L Y. Interaction between reactive oxygen species and phenols in postharst disease resistance of Carica papaya fruit[D]. Beijing: Chinese Academy of Sciences, 2011.
|
[33] |
doi: 10.13560/j.cnki.biotech.bull.1985.2013.10.033
|
|
Xue X, Zhang Q, Wu J X. Research of reactive oxygen species in plants and its application on stress tolerance[J]. Biotechnology Bulletin, 2013(10):6-11.
|
[34] |
吴寒. 活性氧在植物体内的作用及其清除体制[J]. 广东蚕业, 2018, 52(3):18.
|
|
Wu H. Active oxygen in plants and its elimination system[J]. Guangdong Sericulture, 2018, 52(3):18.
|
[35] |
张键, 曹雄, 杨剑锋, 贾硕, 刘麟, 阿德拉·曼德拉-俄罗摩, 冯伊彤, 赵君. 活性氧及抗病信号分子介导的向日葵抗黄萎病机制初探[J]. 华北农学报, 2022, 37(3): 193-199. doi: 10.7668/hbnxb.20192593.
doi: 10.7668/hbnxb.20192593
|
|
Zhang J, Cao X, Yang J F, Jia S, Liu L, ADDRAH Mandela-Elorm, Feng Y T, Zhao J. Prilminary study on the mechanism of resistance to sunflower verticillium wilt mediated by reactive oxygen and signaling molecules[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3):193-199.
|
[36] |
doi: 10.7606/j.issn.1000-4025.2021.06.0910
|
|
Lu X S, Chen Q, Han W L, Qu Y Y, Chen Q J, Deng X J. Cloning of glutathione transferase gene GbGSTU7 and its response to Fusarium wilt infection[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6):910-918.
|