[1] |
Lecluze E, Jégou B, Rolland A D, Chalmel F. New transcriptomic tools to understand testis development and functions[J]. Molecular and Cellular Endocrinology, 2018, 468:47-59. doi: 10.1016/j.mce.2018.02.019.
doi: S0303-7207(18)30079-0
pmid: 29501799
|
[2] |
doi: 10.3969/j.issn.1671-7236.2007.01.025
|
|
Li L, Zhou L H, Ren D R, Xing Y Y, Chen C Y. Epididymal functions and its influence on sperm maturation[J]. China Animal Husbandry & Veterinary Medicine, 2007, 34(1): 79-82.
|
[3] |
Asano A, Tajima A. Development and Preservation of Avian Sperm[J]. Avian Reproduction, 2017, 1001:59-73.
|
[4] |
doi: 10.3724/SP.J.1005.2014.0646
|
|
Ran M L, Chen B, Yin J, Yang A Q, Jiang M. Advances in miRNA research related to testis development and spermatogenesis[J]. Hereditas, 2014, 36(7): 646-654.
|
[5] |
Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B. Prediction of mammalian microRNA targets[J]. Cell, 2003, 115(7): 787-798. doi: 10.1016/s0092-8674(03)01018-3.
doi: 10.1016/s0092-8674(03)01018-3
pmid: 14697198
|
[6] |
Yang Q E, Racicot K E, Kaucher A V, Oatley M J, Oatley J M. MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells[J]. Development, 2013, 140(2):280-290.doi: 10.1242/dev.087403.
doi: 10.1242/dev.087403
URL
|
[7] |
Yu Z R, Raabe T, Hecht N B. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2(Tnp2)messenger RNA(mRNA)by mRNA cleavage[J]. Biology of Reproduction, 2005, 73(3):427-433. doi: 10.1095/biolreprod.105.040998.
doi: 10.1095/biolreprod.105.040998
URL
|
[8] |
Liu Y F, Sun Y Y, Li Y L, Bai H, Xu S S, Xu H, Ni A X, Yang N, Chen J L. Identification and differential expression of microRNAs in the testis of chicken with high and low sperm motility[J]. Theriogenology, 2018, 122:94-101.doi: 10.1016/j.theriogenology.2018.09.010.
doi: S0093-691X(18)30786-6
pmid: 30243140
|
[9] |
Słowińska M, Paukszto Ł, Paweł Jastrzebski J, Bukowska J, Kozłowski K, Jankowski J, Ciereszko A. Transcriptome analysis of turkey( Meleagris gallopavo)reproductive tract revealed key pathways regulating spermatogenesis and post-testicular sperm maturation[J]. Poult Sci, 2020, 99(11):6094-6118.doi: 10.1016/j.psj.2020.07.031.
doi: 10.1016/j.psj.2020.07.031
URL
|
[10] |
Gordon A, Hannon G J. Fastx-toolkit. FASTQ/A short-reads preprocessing tools(unpublished)[DB/OL]. 2010.p.5 http://hannonlab.cshl.edu/fastx_toolkit
URL
|
[11] |
Kozomara A, Griffiths-Jones S. miRBase: Annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Research, 2014, 42(database issue): D68-D73. doi: 10.1093/nar/gkt1181.
doi: 10.1093/nar/gkt1181
|
[12] |
Friedländer M R, Mackowiak S D, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Res, 2012, 40(1):37-52.doi: 10.1093/nar/gkr688.
doi: 10.1093/nar/gkr688
pmid: 21911355
|
[13] |
Robinson M D, McCarthy D J, Smyth G K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. doi: 10.1093/bioinformatics/btp616.
doi: 10.1093/bioinformatics/btp616
pmid: 19910308
|
[14] |
Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B. Prediction of mammalian microRNA targets[J]. Journal of Clinical Bioinformatics, 2003, 115(7):787-798. doi: 10.1016/s0092-8674(03)01018-3.
doi: 10.1016/s0092-8674(03)01018-3
|
[15] |
Wong N, Wang X. miRDB: An online resource for microRNA target prediction and functional annotations[J]. Nucleic Acids Research, 2015, 43(database issue): D146-D152. doi: 10.1093/nar/gku1104.
doi: 10.1093/nar/gku1104
|
[16] |
Wang J W, Zhang C Y, Wu Y, He W Y, Gou X. Identification and analysis of long non-coding RNA related miRNA sponge regulatory network in bladder urothelial carcinoma[J]. Journal of Biomedical Science, 2019, 19: 327. doi: 10.1186/s12935-019-1052-2.
doi: 10.1186/s12935-019-1052-2
|
[17] |
Badawy A A, El-Magd M A, AlSadrah S A, Alruwaili M M. Altered expression of some miRNAs and their target genes following mesenchymal stem cell treatment in busulfan-induced azoospermic rats[J]. Gene, 2020, 737: 144481. doi: 10.1016/j.gene.2020.144481.
doi: 10.1016/j.gene.2020.144481
|
[18] |
Kang W J, Cho Y L, Chae J R, Lee J D, Choi K J, Kim S. Molecular beacon-based bioimaging of multiple microRNAs during myogenesis[J]. Biomaterials, 2011, 32(7):1915-1922. doi: 10.1016/j.biomaterials.2010.11.007.
doi: 10.1016/j.biomaterials.2010.11.007
pmid: 21122913
|
[19] |
Wong C F, Tellam R L. microRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis[J]. The Journal of Biological Chemistry, 2008, 283(15):9836-9843. doi: 10.1074/jbc.m709614200.
doi: 10.1074/jbc.m709614200
URL
|
[20] |
Guo Y, Tian Y. MiR-26a inhibits proliferation and apoptosis of uveal melanoma cells via regulating p53/MDm2 pathway[J]. J BUON, 2020, 25(5):2476-2481.
|
[21] |
冉茂良. 猪睾丸组织发育过程中差异表达基因和microRNA的鉴定及功能研究[D]. 长沙: 湖南农业大学, 2017.
|
|
Ran M L. Identification and functional study of differentially expressed genes and microRNA during the development of porcine testis[D]. Changsha: Hunan Agricultural University, 2017.
|
[22] |
Huang J M, Guo F F, Zhang Z B, Zhang Y P, Wang X G, Ju Z H, Yang C H, Wang C F, Hou M H, Zhong J F. PCK1 is negatively regulated by bta-miR-26a,and a single-nucleotide polymorphism in the 3' untranslated region is involved in semen quality and longevity of Holstein bulls[J]. Mol Reprod Dev, 2016, 83(3):217-225.doi: 10.1002/mrd.22613.
doi: 10.1002/mrd.22613
URL
|
[23] |
王颖洁. gga-miR-31-5p调控鸡减数分裂和精子生成的机制解析[D]. 扬州: 扬州大学, 2020.
|
|
Wang Y J. Mechanism analysis of gga-miR-31-5p regulating meiosis and spermatogenesis in chickens[D]. Yangzhou: Yangzhou University, 2020.
|
[24] |
Zhang X, Li C, Liu X, Lu C, Bai C, Zhao Z, Sun B. Differential expression of miR-499 and validation of predicted target genes in the testicular tissue of swine at different developmental stages[J]. DNA Cell Biol, 2015, 34(7): 464-469. doi: 10.1089/dna.2014.2728.
doi: 10.1089/dna.2014.2728
pmid: 25786081
|
[25] |
张晓军. miR-375/499在猪睾丸组织不同发育阶段表达研究及靶基因验证[D]. 长春: 吉林大学, 2015.
|
|
Zhang X J. Expression of miR-375/499 in different developmental stages of porcine testis and verification of target gene[D]. Changchun: Jilin University, 2015.
|
[26] |
Mishima T, Takizawa T, Luo S S, Ishibashi O, Kawahigashi Y, Mizuguchi Y, Ishikawa T, Mori M, Kanda T, Goto T, Takizawa T. MicroRNA(miRNA)cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary[J]. Reproduction, 2008, 136(6):811-822.doi: 10.1530/REP-08-0349.
doi: 10.1530/REP-08-0349
pmid: 18772262
|
[27] |
Yu M, Mu H L, Niu Z W, Chu Z L, Zhu H J, Hua J L. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2[J]. Journal of Cellular Biochemistry, 2014, 115(2): 232-242. doi: 10.1002/jcb.24655.
doi: 10.1002/jcb.24655
pmid: 24038201
|
[28] |
赵伟. 猪不同发育阶段睾丸组织中miR-34b/c及预测靶基因差异表达研究[D]. 长春: 吉林大学, 2013.
|
|
Zhao W. Differential expression of miR-34b/c and predicted target genes in porcine testis at different developmental stages[D]. Changchun: Jilin University, 2013.
|
[29] |
陈建勇, 王聪, 王娟, 曹礼荣. MAPK信号通路研究进展[J]. 中国医药科学, 2011, 1(8): 32-34.
|
|
Chen J Y, Wang C, Wang J, Cao L R. Research progress of MAPK signaling pathway[J]. China Medicine and Pharmacy, 2011, 1(8): 32-34.
|
[30] |
Li M W M, Mruk D D, Cheng C Y. Mitogen-activated protein kinases in male reproductive function[J]. Trends in Molecular Medicine, 2009, 15(4): 159-168. doi: 10.1016/j.molmed.2009.02.002.
doi: 10.1016/j.molmed.2009.02.002
pmid: 19303360
|
[31] |
Almog T, Naor Z. The role of Mitogen activated protein kinase(MAPK)in sperm functions[J]. Molecular and Cellular Endocrinology, 2010, 314(2): 239-243. doi: 10.1016/j.mce.2009.05.009.
doi: 10.1016/j.mce.2009.05.009
pmid: 19467295
|