[1] Zhang X,Long Y,Huang J J,Xia J X. Molecular mechanisms for coping with Al toxicityin plants[J]. International Journal of Molecular Sciences, 2019,20(7):1551. doi:10.3390/ijms20071551. [2] Chen J G,Lai Q,Zeng B Q,Guo L B,Ye G Y. Progress on molecular mechanism of aluminum resistance in rice[J]. Rice Science,2020,27(6):454-467. doi:10.1016/j.rsci.2020.09.003. [3] Rahman R,Upadhyaya H. Aluminium toxicity and its tolerance in plant:a review[J]. Journal of Plant Biology,2020. doi:10.1007/s12374-020-09280-4. [4] Liu J P,Piñeros M A,Kochian L V. The role of aluminum sensing and signaling in plant aluminum resistance[J]. Journal of Integrative Plant Biology,2014,56(3):221-230. doi:10.1111/jipb.12162. [5] Chen W W,Xu J M,Jin J F,Lou H Q,Fan W,Yang J L. Genome-wide transcriptome analysis reveals conserved and distinct molecular mechanisms of Al resistance in buckwheat(Fagopyrum esculentum Moench) leaves[J]. International Journal of Molecular Sciences,2017,18(9):1859. doi:10.3390/ijms18091859. [6] Xu J M,Fan W,Jin J F,Lou H Q,Chen W W,Yang J L,Zheng S J. Transcriptome analysis of Al-induced genes in buckwheat(Fagopyrum esculentum Moench) root apex:new insight into Al toxicity and resistance mechanisms in an Al accumulating species[J]. Frontiers in Plant Science,2017,8:1141. doi:10.3389/fpls.2017.01141. [7] Jiang C D,Liu L S,Li X F,Han R R,Wei Y M,Yu Y X. Insights into aluminum-tolerance pathways in Stylosanthes as revealed by RNA-Seq analysis[J]. Scientific Reports,2018,8:6072. doi:10.1038/s41598-018-24536-3. [8] Kusunoki K,Kobayashi Y,Kobayashi Y,Koyama H. Comparative characterization of aluminum responsive transcriptome in Arabidopsis roots:comparison with other rhizotoxic ions at different stress intensities[J]. Soil Science and Plant Nutrition,2018,64(4):469-481. doi:10.1080/00380768.2018.1454253. [9] Tyagi W,Yumnam J S,Sen D,Rai M. Root transcriptome reveals efficient cell signaling and energy conservation key to aluminum toxicity tolerance in acidic soil adapted rice genotype[J]. Scientific Reports,2020,10:4580. doi:10.1038/s41598-020-61305-7. [10] 袁伟,万红建,杨悦俭. 植物实时荧光定量PCR内参基因的特点及选择[J]. 植物学报,2012,47(4):427-436. doi:10.3724/SP.J.1259.2012.00427. Yuan W,Wan H J,Yang Y J. Characterization and selection of reference genes for real-time quantitative RT-PCR of plants[J]. Chinese bulletin Botany,2012,47(4):427-436. [11] Mehta R,Birerdinc A,Hossain N,Afendy A,Chandhoke V,Younossi Z,Baranova A. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples[J]. BMC Molecular Biology,2010,11:39.doi:10.1186/1471-2199-11-39. [12] 张颖,陈婉婷,陈冉红,帅鹏,李明. 杉木实时荧光定量PCR分析中内参基因的选择[J]. 林业科学研究,2019,32(2):65-72. doi:10.13275/j.cnki.lykxyj.2019.02.010. Zhang Y,Chen W T,Chen R H,Shuai P,Li M. Quantitative real-time PCR analysis of Cunninghamia lanceolata in the selection of the reference genes[J]. Forest Research,2019,32(2):65-72. [13] 王冰,王勤方,唐天向,唐伟杰,李丽萍,隋丽波,孙超,张慧,夏张婷,林良斌. 转录组分析挖掘油菜耐旱基因[J]. 基因组学与应用生物学,2018,37(11):4775-4786. doi:10.13417/j.gab.037.004775. Wang B,Wang Q F,Tang T X,Tang W J,Li L P,Sui L B,Sun C,Zhang H,Xia Z T,Lin L B. Discovery of drought-tolerant genes in Brassica napus by transcriptome analysis[J]. Genomics and Applied Biology,2018,37(11):4775-4786. [14] 张振乾,常涛,王晓丹,王峰,王国槐,邬贤梦,胡琼,官春云. 高油酸油菜成熟期种子转录组分析[J]. 分子植物育种, 2018,16(6):1731-1745. doi:10.13271/j.mpb.016.001731. Zhang Z Q,Chang T,Wang X D,Wang F,Wang G H,Wu X M,Hu Q,Guan C Y. Transcriptome analysis of mature seeds of high oleic acid rapeseed[J]. Molecular Plant Breeding,2018,16(6):1731-1745. [15] 张秋平,文李,张振乾,王峰,官春云. 抗感菌核病甘蓝型油菜近等基因系盛花期叶片转录组比较分析[J]. 华北农学报,2020,35(3):168-177. doi:10.7668/hbnxb.20190761. Zhang Q P,Wen L,Zhang Z Q,Wang F,Guan C Y.Comparative transcriptomic analysis of Brassica napus near-isogenic line resistant to Sclerotinia sclerotirium at flowering stage[J]. Acta Agriculturae Boreali-Sinica,2020,35(3):168-177. [16] 韩配配,秦璐,李银水,廖祥生,徐子先,余常兵,胡小加,谢立华,廖红,廖星. 不同营养元素缺乏对甘蓝型油菜苗期生长和根系形态的影响[J].中国油料作物学报,2016,38(1):88-97.doi:10.7505/j.issn.1007-9084.2016.01.014. Han P P,Qin L,Li Y S,Liao X S,Xu Z X,Yu C B,Hu X J,Xie L H,Liao H,Liao X.Effects of different nutrient deficiencies on growth and root morphological changes of rapeseed seedlings(Brassica napus L.)[J]. Chinese Journal of Oil Crop Sciences,2016,38(1):88-97. [17] Chalhoub B,Denoeud F,Liu S Y,Parkin I A P,Tang H B,Wang X Y,Chiquet J,Belcram H,Tong C B,Samans B,Corréa M,Da Silva C,Just J,Falentin C,Koh C S,Le Clainche I,Bernard M,Bento P,Noel B,Labadie K,Alberti A,Charles M,Arnaud D,Guo H,Daviaud C,Alamery S,Jabbari K,Zhao M X,Edger P P,Chelaifa H,Tack D,Lassalle G,Mestiri I,Schnel N,Le Paslier M C,Fan G Y,Renault V,Bayer P E,Golicz A A,Manoli S,Lee T H,Thi V H D,Chalabi S,Hu Q,Fan C C,Tollenaere R,Lu Y H,Battail C,Shen J X,Sidebottom C H D,Wang X F,Canaguier A,Chauveau A,Bérard A,Deniot G,Guan M,Liu Z S,Sun F M,Lim Y P,Lyons E,Town C D,Bancroft I,Wang X W,Meng J L,Ma J X,Pires J C,King G J,Brunel D,Delourme R,Renard M,Aury J M,Adams K L,Batley J,Snowdon R J,Tost J,Edwards D,Zhou Y M,Hua W,Sharpe A G,Paterson A H,Guan C Y. Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science,2014,345(6199):950-953. doi:10.1126/science.1253435. [18] Hua Y P,Zhang D D,Zhou T,He M L,Ding G D,Shi L,Xu F S. Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed[J]. Plant,Cell & Environment,2016,39(7):1601-1618. doi:10.1111/pce.12731. [19] Vandesompele J,De Preter K,Pattyn F,Poppe B,Van Roy N,De Paepe A,Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002,3(7):research0034.1-0034.11. doi:10.1186/gb-2002-3-7-research0034. [20] Andersen C L,Jensen J L,Ørntoft T F. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research,2004,64(15):5245-5250. doi:10.1158/0008-5472.CAN-04-0496. [21] Pfaffl M W,Tichopád A,Prgomet C,Neuvians T P. Determination of stable housekeeping genes,differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters,2004,26:509-515.doi:10.1023/B:BILE.0000019559.84305.47. [22] 肖燕,姚珺玥,刘冬,宋海星,张振华. 甘蓝型油菜响应低氮胁迫的表达谱分析[J].作物学报,2020,46(10):1526-1538.doi:10.3724/SP.J.1006.2020.94197. Xiao Y,Yao J Y,Liu D,Song H X,Zhang Z H,Expression profile analysis of low nitrogen stress in Brassica napus[J]. Acta Agronomica Sinica,2020,46(10):1526-1538. [23] 李培培,谢礼,薛进,羊健,李静,严成其,张恒木,陈剑平. 一个水稻β-肌动蛋白基因的克隆及其亚细胞定位[J]. 生物技术通讯,2014,25(6):828-831. doi:10.3969/j.issn.1009-0002.2014.06.018. Li P P,Xie L,Xue J,Yang J,Li J,Yan C Q,Zhang H M,Chen J P. Cloning and subcellular localization of a rice β-actin gene[J]. Letters in Biotechnology,2014,25(6):828-831. [24] 卢倩,弭晓菊,崔继哲. 植物甘油醛-3-磷酸脱氢酶作用机制的研究进展[J]. 生物技术通报,2013(8):1-6. doi:10.13560/j.cnki.biotech.bull.1985.2013.08.028. Lu Q,Mi X J,Cui J Z. Research advances on the mechanism of glyceraldehydes-3-phosphate dehydrogenase in plant[J]. Biotechnology Bulletin,2013(8):1-6. [25] 饶国栋,张建国. 植物微管蛋白基因研究进展[J]. 世界林业研究,2013,26(3):17-20. doi:10.13348/j.cnki.sjlyyj.2013.03.011. Rao G D,Zhang J G. Advances of studies on plant tubulin gene[J]. World Forestry Research,2013,26(3):17-20. [26] Pabinger S,Rödiger S,Kriegner A,Vierlinger K,Weinhäusel A. A survey of tools for the analysis of quantitative PCR(qPCR) data[J]. Biomolecular Detection and Quantification,2014,1(1):23-33. doi:10.1016/j.bdq.2014.08.002. [27] Rancurel C,van Tran T,Elie C,Hilliou F. SATQPCR:Website for statistical analysis of real-time quantitative PCR data[J]. Molecular and Cellular Probes,2019,46:101418. doi:10.1016/j.mcp.2019.07.001. [28] Zanardi N,Morini M,Tangaro M A,Zambelli F,Bosco M C,Varesio L,Eva A,Cangelosi D.PIPE-T:a new Galaxy tool for the analysis of RT-qPCR expression data[J]. Scientific Reports,2019,9:17550.doi:10.1038/s41598-019-53155-9. [29] Ramakers C,Ruijter J M,Deprez R H L,Moorman A F M. Assumption-free analysis of quantitative real-time polymerase chain reaction(PCR) data[J]. Neuroscience Letters,2003,339(1):62-66. doi:10.1016/S0304-3940(02) 01423-4. [30] Ruijter J M,Ramakers C,Hoogaars W M H,Karlen Y,Bakker O,van den Hoff M J B,Moorman A F M. Amplification efficiency:linking baseline and bias in the analysis of quantitative PCR data[J]. Nucleic Acids Research,2009,37(6):e45. doi:10.1093/nar/gkp045. [31] Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research,2001,29(9):e45. doi:10.1093/nar/29.9.e45. [32] Pfaffl M W,Horgan G W,Dempfle L. Relative expression software tool(REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J]. Nucleic Acids Research,2002,30(9):e36. doi:10.1093/nar/30.9.e36. [33] Yousefirad S,Soltanloo H,Ramezanpour S S,Nezhad K Z,Shariati V. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley[J]. PLoS One,2020,15(3):e0229513. doi:10.1371/journal. pone.0229513. [34] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod[J]. Methods,2001,25(4):402-408. doi:10.1006/meth.2001.1262. [35] 徐丽华,刘春雷,常玉梅,梁利群,刘金亮,高国强,韩启霞. 双标准曲线相对定量PCR试验原理与方法[J]. 生物技术通报,2011(1):70-75. doi:10.13560/j.cnki.biotech.bull.1985.2011.01.036. Xu L H,Liu C L,Chang Y M,Liang L Q,Liu J L,Gao G Q,Han Q X. Theory and method of double-standard curves method of relative quantification PCR[J]. Biotechnology Bulletin,2011(1):70-75. [36] 易健明,屈武斌,张成岗. 实时荧光相对定量PCR的数据分析方法[J]. 生物技术通讯,2015,26(1):140-145. doi:10.3969/j.issn.1009-0002.2015.01.031. Yi J M,Qu W B,Zhang C G. Data analysis methods of real-time fluorescent quantitative PCR[J]. Letters in Biotechnology,2015,26(1):140-145. [37] Peng J S,Ding G,Meng S,Yi H Y,Gong J M. Enhanced metal tolerance correlates with heterotypic variation in SpMTL,a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola[J]. Plant,Cell & Environment,2017,40(8):1368-1378. doi:10.1111/pce.12929. [38] 丁戈,彭佳师,张国斌,易红英,付艳蕾,龚继明. 植物螯合肽合酶基因 AtPCS2 的表达调控[J]. 中国科学(生命科学),2013,43(12):1112-1118. doi:10.1360/052013-309. Ding G,Peng J S,Zhang G B,Yi H Y,Fu Y L,Gong J M. Regulation of the phytochelatin synthase gene AtPCS2 in Arabidopsis thaliana[J]. Scientia Sinica(Vitae),2013,43(12):1112-1118. |