[1] |
Wang P C, Yang F Y, Ma Z, Zhang R Z. Chromosome unipolar division and low expression of Tws may cause parthenogenesis of rice water weevil( Lissorhoptrus oryzophilus kuschel)[J]. Insects, 2021, 12(4):278.doi: 10.3390/insects12040278.
doi: 10.3390/insects12040278
URL
|
[2] |
doi: 10.7679/j.issn.2095-1353.2018.001
|
|
Ma Z, Jiang C Y, Qin M, Liu H, Feng X D, Zhang R Z. Distribution and spread of national quarantine insects of agricultural plants in China[J]. Chinese Journal of Applied Entomology, 2018, 55(1):1-11.
|
[3] |
doi: 10.3969/j.issn.1005-2755.2008.02.019
|
|
Yu H Z, Yang P, Liu H H, Yang X, Xiao Z A. Research progress on control strategy of quarantine pest rice water weevil[J]. Plant Quarantine, 2008, 22(2):108-111.
|
[4] |
doi: 10.6048/j.issn.1001-4330.2014.03.011
|
|
Wang G, Tuerxun, He J, Guo W C. Effects of different temperatures on flight capacity in rice water weevil:Lissorbqptrus oryzqphilus Kuschel[J]. Xinjiang Agricultural Sciences, 2014, 51(3):464-470.
|
[5] |
Aghaee M A, Godfrey L D. A century of rice water weevil(Coleoptera:Curculionidae):A history of research and management with an emphasis on the United States[J]. Journal of Integrated Pest Management, 2014, 5(4):D1-D14.doi: 10.1603/IPM14011.
doi: 10.1603/IPM14011
|
[6] |
Lee K Y, Change Y D, Kim T G. Trehalose,a major sugar cryoprotectant of the overwintering rice water weevil, Lissorhoptrus oryzophilus(Coleoptera:Curculionidae)[J]. Journal of Asia-Pacific Entomology, 2002, 5(1):35-41.doi: 10.1016/S1226-8615(08)60130-2.
doi: 10.1016/S1226-8615(08)60130-2
URL
|
[7] |
Yang S, Zhang J H, Wang S, Zhang X X, Liu Y, Xi J H. Identification and profiling of miRNAs in overwintering Lissorhoptrus oryzophilus via next-generation sequencing[J]. Cryobiology, 2017, 74:68-76.doi: 10.1016/j.cryobiol.2016.11.013.
doi: 10.1016/j.cryobiol.2016.11.013
URL
|
[8] |
Yang S, Zhang X X, Wang J X, Wang S, Pan Y, Zhang J H, Xi J H. Identification and analysis of up-regulated proteins in Lissorhoptrus oryzophilus adults for rapid cold hardening[J]. Gene, 2018, 642:9-15.doi: 10.1016/j.gene.2017.11.002.
doi: 10.1016/j.gene.2017.11.002
URL
|
[9] |
Li Q Y, Li Z L, Lu M X, Cao S S, Du Y Z. Selection of valid reference genes for quantitative real-time PCR in Cotesia chilonis(Hymenoptera:Braconidae)exposed to different temperatures[J]. PLoS One, 2019, 14(12):e0226139.doi: 10.1371/journal.pone.0226139.
doi: 10.1371/journal.pone.0226139
|
[10] |
Li X N, Gong P P, Wang B T, Wang C, Li M Y, Zhang Y H, Li X R, Gao H F, Ju J S, Zhu X. Selection and validation of experimental condition-specific reference genes for qRT-PCR in Metopolophium dirhodum(Walker)(Hemiptera:Aphididae)[J]. Scientific Reports, 2020, 10:21951.doi: 10.1038/s41598-020-78974-z.
doi: 10.1038/s41598-020-78974-z
|
[11] |
李晓, 李建文, 成波, 李伟, 孙文秀, 高华援, 鞠倩, 姜晓静, 杜龙, 曲春娟, 曲明静. 大灰象甲实时定量PCR内参基因的筛选[J]. 昆虫学报, 2018, 61(11):1284-1294.doi: 10.16380/j.kcxb.2018.11.005.
doi: 10.16380/j.kcxb.2018.11.005
|
|
Li X, Li J W, Cheng B, Li W, Sun W X, Gao H Y, Ju Q, Jiang X J, Du L, Qu C J, Qu M J. Screening of reference genes for quantitative real-time PCR in Sympiezomias velatus(Coleoptera:Curculionidae)[J]. Acta Entomologica Sinica, 2018, 61(11):1284-1294.
|
[12] |
Andersen C L, Jensen J L, Ørntoft T F. Normalization of real-time quantitative reverse transcription-PCR data:A model-based variance estimation approach to identify genes suited for normalization,applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15):5245-5250.doi: 10.1158/0008-5472.CAN-04-0496.
doi: 10.1158/0008-5472.CAN-04-0496
URL
|
[13] |
Yang X J, Zheng H L, Liu Y Y, Li H W, Jiang Y H, Lin L B, Deng X Y, Zhang Q L. Selection of reference genes for quantitative real-time PCR in Aquatica leii(Coleoptera:Lampyridae)under five different experimental conditions[J]. Frontiers in Physiology, 2020, 11:555233.doi: 10.3389/fphys.2020.555233.
doi: 10.3389/fphys.2020.555233
URL
|
[14] |
Guo C F, Pan H P, Zhang L H, Ou D, Lu Z T, Khan M M, Qiu B L. Comprehensive assessment of candidate reference genes for gene expression studies using RT-qPCR in Tamarixia radiata,a predominant parasitoid of Diaphorina citri[J]. Genes, 2020, 11(10):1178.doi: 10.3390/genes11101178.
doi: 10.3390/genes11101178
URL
|
[15] |
doi: 10.3969/j.issn.1674-0858.2021.01.2
|
|
Chen L, Tian Z, Wang X Y, Chen X M, Lu W, Wang X P, Zheng X L. Screening of reference genes for quantitative real-time PCR in Phauda flammans(Walker)(Lepidoptera:Phaudidae)[J]. Journal of Environmental Entomology, 2021, 43(1):15-24.
|
[16] |
doi: 10.3864/j.issn.0578-1752.2019.19.006
|
|
Liu F Q, Wan G J, Zeng L Y, Li C X, Pan W D, Chen F J. Selection of stable internal reference genes for transcript expression analyses in Laodelphax striatellus under near-zero magnetic field[J]. Scientia Agricultura Sinica, 2019, 52(19):3346-3356.
|
[17] |
Wang X, Kong X, Liu S Y, Huang H Y, Chen Z Z, Xu Y Y. Selection of reference genes for quantitative real-time PCR in Chrysoperla nipponensis (Neuroptera:Chrysopidae)under tissues in reproduction and diapause[J]. Journal of Insect Science, 2020, 20(4):20.doi: 10.1093/jisesa/ieaa079.
doi: 10.1093/jisesa/ieaa079
|
[18] |
Bai Y, Lü Y N, Zeng M, Jia P Y, Lu H N, Zhu Y B, Li S, Cui Y Y, Luan Y X. Selection of reference genes for normalization of gene expression in Thermobia domestica(Insecta:Zygentoma:Lepismatidae)[J]. Genes, 2020, 12(1):21.doi: 10.3390/genes12010021.
doi: 10.3390/genes12010021
URL
|
[19] |
Vandesompele J, De Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7):RESEARCH0034.doi: 10.1186/gb-2002-3-7-research0034.
doi: 10.1186/gb-2002-3-7-research0034
|
[20] |
Pfaffl M W, Tichopad A, Prgomet C, Neuvians T P. Determination of stable housekeeping genes,differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6):509-515.doi: 10.1023/b:bile.0000019559.84305.47.
doi: 10.1023/b:bile.0000019559.84305.47
URL
|
[21] |
Xie M H, Zhong Y Z, Lin L L, Zhang G L, Su W H, Ni W L, Qu M J, Chen H L. Evaluation of reference genes for quantitative real-time PCR normalization in the scarab beetle Holotrichia oblita[J]. PLoS One, 2020, 15(10):e0240972.doi: 10.1371/journal.pone.0240972.
doi: 10.1371/journal.pone.0240972
|
[22] |
Xu J H, Welker D L, James R R. Variation in expression of reference genes across life stages of a bee, Megachile rotundata[J]. Insects, 2021, 12(1):36.doi: 10.3390/insects12010036.
doi: 10.3390/insects12010036
URL
|
[23] |
Shi X Q, Guo W C, Wan P J, Zhou L T, Ren X L, Ahmat T, Fu K Y, Li G Q. Validation of reference genes for expression analysis by quantitative real-time PCR in Leptinotarsa decemlineata (Say)[J]. BMC Research Notes, 2013, 6:93.doi: 10.1186/1756-0500-6-93.
doi: 10.1186/1756-0500-6-93
|
[24] |
doi: 10.16380/j.kcxb.2019.12.004
|
|
Jia B, Ma Y, Pang B P, Shan Y M, Bao Q L, Han H B, Tan Y. Screening of reference genes for quantitative real-time PCR in Lygus pratensis(Hemiptera:Miridae)[J]. Acta Entomologica Sinica, 2019, 62(12):1379-1391.
|