[1] |
Veloso J, Kan J A L V. Many shades of grey in Botrytis-host plant interactions[J]. Trends in Plant Science, 2018, 23(7):613-622. doi: 10.1016/j.tplants.2018.03.016.
doi: 10.1016/j.tplants.2018.03.016
URL
|
[2] |
Petrasch S, Knapp S J, Kan J A L V, Blanco-Ulate B. Grey mould of strawberry,a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea[J]. Molecular Plant Pathology, 2019, 20(6):877-892. doi: 10.1111/mpp.12794.
doi: 10.1111/mpp.12794
pmid: 30945788
|
[3] |
Hamel L P, Nicole M C, Duplessis S, Ellis B E. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers[J]. The Plant Cell, 2012, 24(4):1327-1351. doi: 10.1105/tpc.112.096156.
doi: 10.1105/tpc.112.096156
URL
|
[4] |
Leroch M, Mueller N, Hinsenkamp I, Hahn M. The signalling mucin Msb2 regulates surface sensing and host penetration via BMP1 MAP kinase signalling in Botrytis cinerea[J]. Molecular Plant Pathology, 2015, 16(8):787-798. doi: 10.1111/mpp.12234.
doi: 10.1111/mpp.12234
URL
|
[5] |
Rui O, Hahn M. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth,conidiation,plant surface sensing and host tissue colonization[J]. Molecular Plant Pathology, 2007, 8(2):173-184. doi: 10.1111/j.1364-3703.2007.00383.x.
doi: 10.1111/j.1364-3703.2007.00383.x
URL
|
[6] |
Heller J, Ruhnke N, Espino J J, Massaroli M, Collado I G, Tudzynski P. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response[J]. Molecular Plant Microbe Interactions, 2012, 25(6):802-816. doi: 10.1094/MPMI-11-11-0299.
doi: 10.1094/MPMI-11-11-0299
URL
|
[7] |
Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P. BcSAK1,a stress-activated mitogen-activated protein kinase,is involved in vegetative differentiation and pathogenicity in Botrytis cinerea[J]. Eukaryotic Cell, 2007, 6(2):211-221. doi: 10.1128/EC.00153-06.
doi: 10.1128/EC.00153-06
pmid: 17189492
|
[8] |
Williamson B, Tudzynski B, Tudzynski P, Kan J A L V. Botrytis cinerea:The cause of grey mould disease[J]. Molecular Plant Pathology, 2007, 8(5):561-580. doi: 10.1111/j.1364-3703.2007.00417.x.
doi: 10.1111/j.1364-3703.2007.00417.x
pmid: 20507522
|
[9] |
董丽萍. 灰葡萄孢BcPDR1基因在病菌生长发育和致病过程中的功能[D]. 保定: 河北农业大学, 2016.
|
|
Dong L P. Functional analysis of BcPDR1 on the growth,development and pathogenicity in Botrytis cinere[D]. Baoding: Hebei Agricultural University, 2016.
|
[10] |
Zhao B, Si H L, Sun Z Y, Xu Z, Chen Z, Zhang J L, Xing J H, Dong J G. Identification of development and pathogenicity related gene in Botrytis cinerea via digital gene expression profile[J]. Jundishapur Journal of Microbiology, 2015, 8(4):e22432. doi: 10.5812/jjm.8(4)2015.22432.
doi: 10.5812/jjm.8(4)2015.22432
|
[11] |
张强, 李白, 袁雪梅, 刘晓颖, 藏金萍, 曹宏哲, 张康, 邢继红, 董金皋. 灰葡萄孢 BcPDR1基因与PKA编码基因的关系研究[J]. 植物病理学报, 2021, 51(2):184-191. doi: 10.13926/j.cnki.apps.000517.
doi: 10.13926/j.cnki.apps.000517
|
|
Zhang Q, Li B, Yuan X M, Liu X Y, Zang J P, Cao H Z, Zhang K, Xing J H, Dong J G. A cross-regulation between BcPDR1 and PKA coding genes in Botrytis cinerea[J]. Acta Phytopathologica Sinica, 2021, 51(2):184-191.
|
[12] |
袁雪梅, 王敏, 张强, 白华, 周帆, 刘鹏飞, 张康, 邢继红, 董金皋. 灰葡萄孢丝裂原活化蛋白激酶编码基因 bmp1和 bmp3的功能[J]. 微生物学通报, 2019, 46(2):243-251. doi: 10.13344/j.microbiol.china.180503.
doi: 10.13344/j.microbiol.china.180503
|
|
Yuan X M, Wang M, Zhang Q, Bai H, Zhou F, Liu P F, Zhang K, Xing J H, Dong J G. Function of mitogen-activated protein kinase encoding genes bmp1 and bmp3 in Botrytis cinerea[J]. Microbiology China, 2019, 46(2):243-251.
|
[13] |
Mullins E D, Chen X, Romaine P, Raina R, Kang S. Agrobacterium-mediated transformation of Fusarium oxysporum:an efficient tool for insertional mutagenesis and gene transfer[J]. Phytopathology, 2001, 91(2):173-180. doi: 10.1094/PHYTO.2001.91.2.173.
doi: 10.1094/PHYTO.2001.91.2.173
pmid: 18944391
|
[14] |
doi: 10.3864/j.issn.0578-1752.2014.16.005
|
|
Li P F, Zhao F X, Dong L P, Zheng H X, Zhao B, Han J M, Xing J H, Dong J G. Mechanism analysis of kynurenine 3-monooxygenase gene BcKMO in regulation of pathogenicity in Botrytis cinerea[J]. Scientia Agricultura Sinica, 2014, 47(16):3169-3173.
|
[15] |
Kim Y, Kim B S, Park Y J, Choi W C, Hwang J, Kang B S, Oh T K, Choi S H, Kim M H. Crystal structure of SmcR,a quorum-sensing master regulator of Vibrio vulnificus,provides insight into its regulation of transcription[J]. The Journal of Biological Chemistry, 2010, 285(18):14020-14030. doi: 10.1074/jbc.M109.100248.
doi: 10.1074/jbc.M109.100248
URL
|
[16] |
De Silva R S, Kovacikova G, Lin W, Taylor R K, Skorupski K, Kull F J. Crystal structure of the Vibrio cholerae quorum-sensing regulatory protein HapR[J]. Journal of Bacteriology, 2007, 189(15):5683-5691. doi: 10.1128/jb.01807-06.
doi: 10.1128/jb.01807-06
URL
|
[17] |
Miller D J, Zhang Y M, Subramanian C, Rock C O, White S W. Structural basis for the transcriptional regulation of membrane lipid homeostasis[J]. Nature Structural & Molecular Biology, 2010, 17(8):971-975. doi: 10.1038/nsmb.1847.
doi: 10.1038/nsmb.1847
URL
|
[18] |
Akiba M, Lin J, Barton Y W, Zhang Q J. Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni[J]. Journal of Antimicrobial Chemotherapy, 2005, 57(1):52-60. doi: 10.1093/jac/dki419.
doi: 10.1093/jac/dki419
URL
|
[19] |
Ball A S, van Kessel J C. The master quorum-sensing regulators LuxR/HapR directly interact with the alpha subunit of RNA polymerase to drive transcription activation in Vibrio harveyi and Vibrio cholerae[J]. Molecular Microbiology, 2019, 111(5):1317-1334. doi: 10.1111/mmi.14223.
doi: 10.1111/mmi.14223
URL
|
[20] |
Wei J H, Tian Y Q, Niu G Q, Tan H R. GouR,a TetR family transcriptional regulator,coordinates the biosynthesis and export of gougerotin in Streptomyces graminearus[J]. Applied and Environmental Microbiology, 2014, 80(2):714-722. doi: 10.1128/AEM.03003-13.
doi: 10.1128/AEM.03003-13
URL
|