[1] Nakajima M,Akutsu K. Virulence factors of Botrytis cinerea[J]. Journal of General Plant Pathology,2014,80(1):15-23.
[2] Elad Y,Pertot I,Cotes Prado A M,et al. Plant hosts of Botrytis spp. Botrytis-the fungus,the pathogen and its management in agricultural systems[M]. Switzerland:Springer International Publishing,2016.
[3] Weiberg A,Wang M,Lin F M,et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science,2013,342(6154):118-123.
[4] Amselem J,Cuomo C A,Van Kan J A,et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea[J]. PLoS Genetics,2011,7(8):e1002230.
[5] Van Kan J A. Shaw M W,Grant-Downton R T. Botrytis species:relentless necrotrophic thugs orendophytes gone rogue?[J]. Molecular Plant Pathology,2014,15(9):957-961.
[6] Schumacher J. Signal transduction cascades regulating differentiation and virulence in Botrytis cinerea. Botrytis the fungus,the pathogen and its management in agricultural systems[M]. Switzerland:Springer International Publishing,2016.
[7] Marschall R,Tudzynski P. BcIqg1,a fungal IQGAP homolog,interacts with NADPH oxidase,MAP kinase and calcium signaling proteins and regulates virulence and development in Botrytis cinerea[J]. Molecular Microbiology,2016,101(2):281-298.
[8] Leroch M,Mueller N,Hinsenkamp I,et al. The signalling mucin Msb2 regulates surface sensing and host penetration via BMP1 MAP kinase signalling in Botrytis cinerea[J]. Molecular Plant Pathology,2015,16(8):787-798.
[9] Schumacher J,Tudzynski P. Morphogenesis and Infection in Botrytis cinerea morphogenesis and pathogenicity in Fungi[M]. Berlin Heidelberg:Springer Berlin Heidelberg,2012.
[10] Liu W,Souli M C,Perrino C,et al. The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light[J]. Fungal Genetics and Biology,2011,48(4):377-387.
[11] Heller J,Ruhnke N,Espino J J,et al. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response[J]. Molecular Plant-microbe Interactions,2012,25(6):802-816.
[12] Michielse C B,Becker M,Heller J,et al. The Botrytis cinerea Reg1 protein,a putative transcriptional regulator,is required for pathogenicity,conidiogenesis,and the production of secondary metabolites[J]. Molecular Plant-microbe Interactions,2011,24(9):1074-1085.
[13] Li X,Fernández-Ortuño D,Grabke A,et al. Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry[J]. Phytopathology,2014,104(7):724-732.
[14] Schamber A,Leroch M,Diwo J,et al. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea[J]. Molecular Plant Pathology,2010,11(1):105-119.
[15] Rui O,Hahn M. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth,conidiation,plant surface sensing and host tissue colonization[J]. Molecular Plant Pathology,2007,8(2):173-184.
[16] 张玉净,郝志敏,郑蒙,等. 灰葡萄孢产孢缺陷菌株的遗传分析[J]. 华北农学报,2011,26(3):86-89.
[17] 李培芬,赵福鑫,董丽萍,等. 灰葡萄孢BcKMO 在病菌生长、发育和致病过程中的功能[J]. 中国农业科学,2014,47(15):2971-2979.
[18] 李培芬,赵福鑫,董丽萍,等. 灰葡萄孢犬尿氨酸单氧酶基因BcKMO 调控病菌致病力的机制分析[J]. 中国农业科学,2014,47(16):3169-3175.
[19] Doehlemann G,Berndt P,Hahn M. Different signalling pathways involving a Galpha protein,cAMP and a MAP kinase control germination of Botrytis cinerea conidia[J]. Molecular Microbiology,2006,59(3):821-835.
[20] Yang Q,Yan L,Gu Q,et al. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea[J]. Applied Microbiology and Biotechnology,2012,96(2):481-492. |