[1] 李秀丽,高智谋. 核盘菌(Sclerotinia sclerotiorum)致病分子机理研究进展[J].安徽农业大学学报,2013,40(2):266-272.
[2] Boland G J,Hall R. Index of plant hosts of Sclerotinia sclerotiorum[J]. Canadian Journal of Plant Pathology,1994,16(2):93-108.
[3] Bateman D F,Beer S V. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by sclerotium rolfsii[J]. Phytopathology,1965,55:204-211.
[4] Bolton M D,Thomma B P,Nelson B D. Sclerotinia sclerotiorum (Lib.) de Bary:biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology,2006,7(1):1-16.
[5] Heller A,Witt-Geiges T. Oxalic acid has an additional,detoxifying function in Sclerotinia sclerotiorum pathogenesis[J]. PLoS One,2013,8(8):e72292.
[6] Fagundes-Nacarath I R,Debona D,Rodrigues F A. Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction[J]. Plant Physiology and Biochemistry,2018,129:109-121.
[7] Foley R C,Kidd B N,Hane J K,et al. Reactive oxygen species play a role in the infection of the necrotrophic fungi, rhizoctonia solani in wheat[J]. PLoS One,2016,11(3):e0152548.
[8] Arfaoui A,El Hadrami A,Daayf F. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum[J]. Plant Physiology and Biochemistry,2018,122:121-128.
[9] Kim H J,Chen C,Kabbage M,et al. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases[J]. Applied and Environmental Microbiology,2011,77(21):7721-7729.
[10] Guyon K,Balagué C,Roby D,et al. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum[J]. BMC Genomics,2014,15:336.
[11] Lyu X,Shen C,Fu Y,et al. A small secreted Virulence-Related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants[J]. PLoS Pathogens,2016,12(2):e1005435.
[12] Zhu W,Wei W,Fu Y,et al. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance[J]. PLoS One,2013,8(1):e53901.
[13] Zhao P B,Ren A Z,Xu H J,et al. A cAMP-dependent serine-threonine protein kinase Gene(fpk1)in Fusarium verticillieides is required for hyphal development,cell wall con struction and plant infection[J]. Journal of Microbioogyl Biotechnology,2010,20(1):208-216.
[14] Strack D. Plant biochemistry[M]. New York:Academic Press,1997:387-416.
[15] Dewick P M. The biosynthesis of shikimate metabolites[J]. Natural Product Reports,1984,1(5):451-469.
[16] Djamei A,Schipper K,Rabe F,et al. Metabolic priming by a secreted fungal effector[J]. Nature,2011,478:395-398.
[17] Amselem J,Cuomo C A,Van Kan J A,et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea[J]. PLoS Genetics,2011,7(8):e1002230.
[18] Yang Y X,Ahammed G J,Wu C,et al. Crosstalk among jasmonate,salicylate and ethylene signaling pathways in plant disease and immune responses[J]. Current Protein & Peptide Science,2015,16(5):450-461.
[19] Novfikovfi M,Sagek V Dobrev PI,Valentovfi 0,et al. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum reassessing the role of salicylic acid in the interaction with a necrotroph[J]. Plant Physiology and Biochemistry,2014,80:308-317.
[20] Perchepied L,Balagué C,Riou C,et al. Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana[J].Molecular Plant Microbe Interactions,2010,23(7):846-860.
[21] Wang Z,Tan X,Zhang Z,et al. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling[J]. Plant Science,2012,184:75-82. |