[1] Khush G S. Green revolution:preparing for the 21st century[J]. Genome,1999,42(4):646-655. doi:10.1139/gen-42-4-646. [2] Pingali P L. Green revolution:impacts,limits,and the path ahead[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(31):12302-12308. doi:10.1073/pnas.0912953109. [3] Evenson R E,Gollin D. Assessing the impact of the green revolution,1960 to 2000[J]. Science,2003,300(5620):758-762. doi:10.1126/science.1078710. [4] Hedden P. The genes of the green revolution[J]. Trends in Genetics,2003,19(1):5-9. doi:10.1016/s0168-9525(02) 00009-4. [5] Li S,Tian Y H,Wu K,Ye Y F,Yu J P,Zhang J Q,Liu Q,Hu M Y,Li H,Tong Y P,Harberd N P,Fu X D. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature,2018,560(7720):595-600.doi:10.1038/s41586-018-0415-5. [6] 黄东迈,朱培立,高家骅. 有机、无机态肥料氮在水田和旱地的残留效应[J]. 中国科学(B辑化学生物学农学医学地学),1982,12(10):907-912. Huang D M,Zhu P L,Gao J Y. Residual effect of organic and inorganic fertilizer nitrogen on paddy field and upland[J]. Scientia Sinica(Chimica),1982,12(10):907-912. [7] 熊正琴,邢光熹,沈光裕,孙德玲. 太湖地区湖、河和井水中氮污染状况的研究[J]. 农村生态环境,2002,18(2):29-33. doi:10.3969/j.issn.1673-4831.2002.02.007. Xiong Z Q,Xing G X,Shen G Y,Sun D L. Non-point source N pollution of lakes,rivers and wells in the Taihu Lake region[J]. Journal of Ecology and Rural Environment,2002,18(2):29-33. [8] 周学志. 地下水开发利用的环境问题及防治措施研究[J]. 环境科学丛刊,1992,13(3):1-32. Zhou X Z. Study on environmental problems and prevention measures of groundwater development and utilization[J]. Chinese Journal of Environmental Engineering,1992,13(3):1-32. [9] 邢光熹,颜晓元.中国农田N2O排放的分析估算与减缓对策[J].农村生态环境,2000,16(4):1-6.doi:10.3969/j.issn.1673-4831.2000.04.001. Xing G X,Yan X Y.Analysis and estimation of N2O emissions from croplands in China and its mitigation options[J]. Journal of Ecology and Rural Environment,2000,16(4):1-6. [10] Baker A J M,Mcgrath S P,Sidoli C M D,Reeves R D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants[J]. Resources Conservation and Recycling,1994,11(1-4):41-49. doi:10.1016/0921-3449(94) 90077-9. [11] Wu K,Wang S S,Song W Z,Zhang J Q,Wang Y,Liu Q,Yu J P,Ye Y F,Li S,Chen J F,Zhao Y,Wang J,Wu X K,Wang M Y,Zhang Y J,Liu B M,Wu Y J,Harberd N P,Fu X D. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science,2020,367(6478):2046. doi:10.1126/science.aaz2046. [12] Wei H Y,Zhu Y,Qiu S,Han C,Hu L,Xu D,Zhou N B,Xing Z P,Hu Y J,Cui P Y,Dai Q G,Zhang H C. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice[J]. Journal of Integrative Agriculture,2018,17(11):2405-2417. doi:10.1016/S2095-3119(18) 62025-8. [13] 孙新,施卫明. 氮素形态对水稻蔗糖分配的影响[J]. 安徽农业科学,2008,36(13):5344-5346,5677. doi:10.3969/j.issn.0517-6611.2008.13.037. Sun X,Shi W M. Influence of different nitrogen forms on the sucrose partitioning characteristics of rice(Oryza sativa L.) plants[J]. Journal of Anhui Agri Sci,2008,36(13):5344-5346,5677. [14] 刘洪,李之林,徐振江,王维,任永浩,肖立中. 施氮对大穗型两系杂交水稻弱势粒碳氮代谢的影响[J]. 湖北农业科学,2013,52(8):1755-1759. doi:10.3969/j.issn.0439-8114.2013.08.005. Liu H,Li Z L,Xu Z J,Wang W,Ren Y H,Xiao L Z. Effects of nitrogen application on metabolism of carbohydrate and nitrogen in the inferior grains of hybrid rice with large panicle[J]. Hubei Agricultural Sciences,2013,52(8):1755-1759. [15] 王德仁,卢婉芳,温怀南,杨志根. 水稻高产、高效、高氨基酸含量及营养价的施氮量优化[J]. 中国农学通报,1995,11(2):24-27. Wang D R,Lu W F,Wen H N,Yang Z G. Optimization of napplication for high yield,high beneift,high amino aeid content and nutrient value in rice[J]. Chinese Agrieultural Science Bulletin,1995,11(2):24-27. [16] 常二华,张慎凤,王志琴,王学明,杨建昌. 结实期氮磷营养水平对水稻根系和籽粒氨基酸含量的影响[J]. 作物学报,2008,34(4):612-618. doi:10.3321/j.issn:0496-3490.2008.04.012. Chang E H,Zhang S F,Wang Z Q,Wang X M,Yang J C. Effect of nitrogen and phosphorus on the amino acids in root exudates and grains of rice during grain filling[J]. Acta Agronomica Sinica,2008,34(4):612-618. [17] Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics,2015,47(7):834-838. doi:10.1038/ng.3337. [18] Wang W,Hu B,Yuan D Y,Liu Y Q,Che R H,Hu Y C,Ou S J,Liu Y X,Zhang Z H,Wang H R,Li H,Jiang Z M,Zhang Z L,Gao X K,Qiu Y H,Meng X B,Liu Y X,Bai Y,Liang Y,Wang Y Q,Zhang L H,Li L G,Sodmergen,Jing H C,Li J Y,Chu C C. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. The Plant Cell,2018,30(3):638-651. doi:10.1105/tpc.17.00809. [19] Chen J G,Zhang Y,Tan Y W,Zhang M,Zhu L L,Xu G H,Fan X R. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter[J]. Plant Biotechnology Journal,2016,14(8):1705-1715. doi:10.1111/pbi.12531. [20] Fan X R,Tang Z,Tan Y W,Zhang Y,Luo B B,Yang M,Lian X M,Shen Q R,Miller A J,Xu G H.Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences,2016,113(26):7118-7123. doi:10.1073/pnas.1525184113. [21] Fang Z M,Xia K F,Yang X,Grotemeyer M S,Meier S,Rentsch D,Xu X L,Zhang M Y. Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency,growth and grain yield in rice[J]. Plant Biotechnology Journal,2013,111(4):446-458. doi:10.1111/pbi.12031. [22] Shu S H,Chen B,Zhou M C,Zhao X M,Xia H Y,Wang M. De novo sequencing and transcriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids[J]. PLoS One,2013,8(8):e71350. doi:10.1371/journal.pone.0071350. [23] 刘学英,李姗,吴昆,刘倩,高秀华,傅向东. 提高农作物氮肥利用效率的关键基因发掘与应用[J]. 科学通报,2019,64(25):2633-2640. doi:10.1360/TB-2019-0043. Liu X Y,Li S,Wu K,Liu Q,Gao X H,Fu X D. Sustainable crop yields from the coordinated modulation of plant growth and nitrogen metabolism[J]. Chin Sci Bull,2019,64(25):2633-2640. [24] Lam H M,Peng S S Y,Coruzzi G M. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana[J]. Plant Physiol,1994,106(4):1347-1357. doi:10.1104/pp.106.4.1347. [25] Lu Y E,Luo F,Yang M,Li X H,Lian X M. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice(Oryza sativa L.)[J]. Science China Life Sciences,2011,54(7):651-663. doi:10.1007/s11427-011-4191-9. [26] Lea P J,Miflin B J.16-transport and metabolism of asparagine and other nitrogen compounds within the plant[M].Amino Acids and Derivatives.Pittsburgh:Academic Press,1980:569-607.doi:10.1016/B978-0-12-675405-6.50022-x. [27] Sieciechowicz K A,Joy K W,Ireland R J. The metabolism of asparagine in plants[J]. Phytochemistry,1988,27(3):663-671. doi:10.1016/0031-9422(88) 84071-8. [28] Lea P J,Robinson S A,Stewart G R. 4-The enzymology and metabolism of glutamine,glutamate,and asparagine[J]. Intermediary Nitrogen Metabolism, 1990,16:121-159.doi:10.1016/B978-0-08-092616-2.50010-3. [29] Lam H M,Coschigano K,Schultz C,Melo-Oliveira R,Tjaden G,Oliveira I,Ngai N,Hsieh M H,Coruzzi G. Use of Arabidopsis mut ants and genes to study amide amino acid biosynthesis[J]. The Plant Cell,1995,7(7):887-898. doi:10.1105/tpc.7.7.887. [30] Lam H M,Wong P,Chan H K,Yam K M,Chen L,Chow C M,Coruzzi G M. Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis[J]. Plant Physiology,2003,132(2):926-935. doi:10.1104/pp.103.020123. [31] Kim W D,Kobayashi O,Kaneko S,Sakakibara Y,Park G G,Kusakabe I, Tanaka H, Kobayashi H. α-Galactosidase from cultured rice(Oryza sativa L. var. Nipponbare) cells[J]. Phytochemistry,2002,61(6):621-630. doi:10.1016/S0031-9422(02) 00368-0. [32] Shibuya H,Kobayashi H,Sato T,Kim W S,Yoshida S,Kaneko S,Kasamo K,Kusakabe I. Purification,characterization,and cDNA cloning of a novel α-galactosidase from Mortierella vinacea[J]. Bioscience,Biotechnology and Biochemistry,1997,61(4):592-598. doi:10.1271/bbb.61.592. [33] Shibuya H,Kobayashi H,Park G G,Komatusu Y,Sato T,Kaneko R,Nagasaki H,Yoshidsa S,Kasamo K,Kusakabe I. Purification and some properties of α-Galactosidase from Penicillium purpurogenum[J]. Bioscience,Biotechnology and Biochemistry,1995,59(12):2333-2335. doi:10.1271/bbb.59.2333. |