[1] 曹庆军, 杨粉团, 姜晓莉, 陈莫军, 李贺, 于洪浩, 鲁建华, 张兆琴, 薄晓杰, 李刚. 玉米抗茎倒能力评价及理想株型[J]. 东北农业科学, 2017, 42(2):17-21.doi:10.16423/j.cnki.1003-8701.2017.02.005. Cao Q J, Yang F T, Jiang X L, Chen M J, Li H, Yu H H, Lu J H, Zhang Y Q, Bo X J, Li G. Evaluation of stem lodging resistance and ideal plant type of lodging resistant maize varieties[J]. Journal of Northeast Agricultural Sciences, 2017, 42(2):17-21. [2] 何川. 抗倒伏玉米矮生系的选育与利用[J]. 杂粮作物, 2010, 30(6):387-388.doi:10.3969/j.issn.2095-0896.2010.06.004. He C. Breeding and utilizing of dwarf maize lodging[J]. Rain Fed Crops, 2010, 30(6):387-388. [3] 周颖, 顾万荣, 赵猛, 佟桐, 刘笑鸣, 李彩凤, 李晶, 魏湜. 黑龙江省不同熟期春玉米品种茎秆特性及机收指标差异[J]. 华北农学报, 2017, 32(S1):140-146.doi:10.7668/hbnxb.2017. S1.025. Zhou Y, Gu W R, Zhao M, Tong T, Liu X M, Li C F, Li J, Wei T. Differences of stalk characteristics and grain mechanically harvesting qualities of different maturing-type spring maize in Heilongjiang Province[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(S1):140-146. [4] 彭长俊, 崔士友. 玉米育种技术体系的构建及有关问题的讨论[J]. 农学学报, 2018, 8(4):1-7. Peng C J, Cui S Y. The construction of technology system of maize breeding and the discussion on relevant problems[J]. Journal of Agriculture, 2018, 8(4):1-7. [5] 崔绍平, 孙世珍, 徐有, 郑积德, 李洪杰. 玉米br-2矮生基因利用的研究[J]. 华北农学报, 1990, 5(2):7-12.doi:10.3321/j.issn:1000-7091.1990.02.002. Cui S P, Sun S Z, Xu Y, Zheng J D, Li H J. A study on util ization of a dwarf gene br-2 in maize breeding[J]. Acta Agriculturae Boreali-Sinica, 1990, 5(2):7-12. [6] 阎淑琴. 矮生玉米的遗传与育种[J]. 玉米科学, 2000, 8(2):36-37, 45.doi:10.3969/j.issn.1005-0906.2000.02.009. Yan S Q. Inheritance and breeding of dwarf type maize[J]. Journal of Maize Sciences, 2000, 8(2):36-37, 45. [7] 何川, 郑祖平, 谢树果, 李钟, 刘代惠. 隐性单基因br-2玉米矮生系的选育[J]. 中国农业科学, 2009, 42(8):2978-2981.doi:10.3864/j.issn.0578-1752.2009.08.042. He C, Zheng Z P, Xie S G, Li Z, Liu D H. Breeding of the maize monogenic br-2 dwarf lines[J]. Scientia Agricultura Sinica, 2009, 42(8):2978-2981. [8] 樊景胜. 玉米矮生基因遗传及其利用[J]. 黑龙江农业科学, 1999(1):29-30.doi:10.11942/j.issn1002-2767.1999.01.0029. Fan J S. Inheritance and utilization of dwarf gene in maiz[J].Heilongjiang Agricultural Sciences, 1999(1):29-30. [9] 田齐建, 乔治军, 董存吉, 穆志新. 玉米矮化育种研究进展及发展前景[J]. 山西农业科学, 2003, 31(2):23-26.doi:10.3969/j.issn.1002-2481.2003.02.006. Tian Q J, Qiao Z J, Dong C J, Mu Z X. Review on research of maize breeding for dwarfness and its development prospect[J]. Journal of Shanxi Agricultural Sciences, 2003, 31(2):23-26. [10] 邱正高, 杨华, 袁亮, 张亚勤, 张采波, 汤玲, 荣廷昭, 曹墨菊. 一份新选玉米矮秆突变体的鉴定与遗传分析[J]. 华北农学报, 2015, 30(6):112-118.doi:10.7668/hbnxb.2015.06.017. Qiu Z G, Yang H, Yuan L, Zhang Y Q, Zhang C B, Tang L, Rong T Z, Cao M J. Identification and genetic analysis of a new dwarf mutant in maize[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(6):112-118. [11] 徐敏, 石海春, 余学杰, 谭义川, 柯永川, 赵长云, 柯永培. 一个玉米矮秆突变体K123d的遗传鉴定[J]. 植物遗传资源学报, 2017, 18(1):155-163.doi:10.13430/j.cnki.jpgr.2017.01.020. Xu M, Shi H C, Yu X J, Tan Y C, Ke Y C, Zhao C Y, Ke Y P. Genetic identification of a dwarf mutant K123d in maize(Zea mays L.)[J]. Journal of Plant Genetic Resources, 2017, 18(1):155-163. [12] 牛群凯, 杨聪, 时子文, 曹墨菊. 玉米太空诱变核不育突变体矮化性状的QTL定位及分析[J]. 四川农业大学学报, 2018, 36(4):429-435, 480.doi:10.16036/j.issn.1000-2650.2018.04.002. Niu Q K, Yang C, Shi Z W, Cao M J. QTL mapping of dwarf-associated traits in the maize male sterile mutant obtained by space flight[J]. Journal of Sichuan Agricultural University, 2018, 36(4):429-435, 480. [13] 刘忠祥, 杨梅, 殷鹏程, 周玉乾, 何海军, 邱法展. 玉米株高主效QTL qPH3.2 精细定位及遗传效应分析[J]. 作物学报, 2018, 44(9):1357-1366.doi:10.3724/SP.J.1006.2018.01357. Liu Z X, Yang M, Yin P C, Zhou Y Q, He H J, Qiu F Z. Fine mapping and genetic effect analysis of a major QTL qPH3.2 associated with plant height in maize(Zea mays L.)[J]. Acta Agronomica Sinica, 2018, 44(9):1357-1366. [14] 张素梅, 刘凤军, 刘保申, 王立静, 董树亭. 新的玉米显性矮秆基因的发现及初步分析[J]. 玉米科学, 2007, 15(3):15-18.doi:10.3969/j.issn.1005-0906.2007.03.004. Zhang S M, Liu F J, Liu B S, Wang L J, Dong S T. Discovery of a new dominant dwarf gene in maize and its preliminary study[J]. Journal of Maize Sciences, 2007, 15(3):15-18. [15] 王益军, 苗楠, 施亚婷, 邓德祥, 卞云龙. 一份玉米显性矮秆突变体的遗传分析[J]. 华北农学报, 2010, 25(5):90-93.doi:10.7668/hbnxb.2010.05.019. Wang Y J, Miao N, Shi Y T, Deng D X, Bian Y L. Genetic analysis of a dominant dwarf mutant in maize[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(5):90-93. [16] Wang Y J, Deng D X, Ding H D, Xu X M, Zhang R, Wang S X, Bian Y L, Yin Z T, Chen Y. Gibberellin biosynthetic deficiency is responsible for maize dominant dwarf11(D11) mutant phenotype:physiological and transcriptomic evidence[J]. PLoS One, 2013, 8(6):e66466.doi:10.1371/journal.pone.0066466. [17] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642):81-84.doi:10.1126/science.1086072. [18] Bensen R J, Johal G S, Grane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene[J]. The Plant Cell,1995, 7(1):75-84.doi:10.1105/tpc.7.1.75. [19] Peng J R, Rivhards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. Green revolution genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400(6741):256-261.doi:10.1038/22307. [20] Lawit S J, Wych H M, Xu D P, Kundu S, Tomes D T. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J]. Plant & Cell Physiology, 2010, 51(11):1854-1868.doi:10.1093/pcp/pcq153. [21] Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis[J]. The Plant Cell, 1995, 7(8):1307-1317.doi:10.1105/tpc.7.8.1307. [22] 王立静. 玉米矮秆基因 Dt 和坏死基因 net-t 的图位克隆与功能分析[D]. 泰安:山东农业大学, 2012.doi:10.7666/d.d224451. Wang L J. Map-based cloning and functional analysis of dwarf gene Dt and necrotic gene net-t in maize[D].Taian:Shandong Agricultural University, 2012. [23] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences, 1991, 88(21):9828-9832.doi:10.2307/2357899. [24] 刘仁虎, 孟金陵. MapDraw, 在Excel中绘制遗传连锁图的宏[J]. 遗传, 2003, 25(3):317-321.doi:10.3321/j.issn:0253-9772.2003.03.019. Liu R H, Meng J L. MapDraw:a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data[J]. Hereditas, 2003, 25(3):317-321. [25] 李钟, 郑祖平, 张国清, 何川. 矮生玉米自交系的选育和利用[J]. 玉米科学, 2006, 14(1):76-78.doi:10.3969/j.issn.1005-0906.2006.01.023. Li Z, Zheng Z P, Zhang G Q, He C. Breeding and application on the inbred line of dwarf maize[J]. Journal of Maize Sciences, 2006, 14(1):76-78. [26] 李忠南, 王克伟, 王越人, 邬生辉, 李光发. 玉米品种先玉335的血缘系谱及主要农艺性状遗传分析[J]. 玉米科学, 2018, 26(3):32-39.doi:10.13597/j.cnki.maize.science.20180307. Li Z N, Wang K W, Wang Y R, Wu S H, Li G F. Genetic analysis on pedigree and agronomic characters of maize variety Xianyu 335[J]. Journal of Maize Sciences, 2018, 26(3):32-39. [27] Sánchez-fernández R, Davies T G E, Coleman J O D, Rea P A. The Arabidopsis thaliana ABC protein superfamily, a complete inventory[J]. Journal of Biological Chemistry, 2001, 276(32):30231-30244.doi:10.1074/jbc.M103104200. [28] Pilu R, Cassani E, Villa D, Curiale S, Panzeri D, Badone F C, Landoni M. Isolation and characterization of a new mutant allele of brachytic 2 maize gene[J]. Molecular Breeding, 2007, 20(2):83-91.doi:10.1007/s11032-006-9073-7. [29] Xing A Q, Gao Y F, Ye L F, Zhang W P, Cai L C, Ade C, Liaca V, Johnson B, Liu L, Yang X H, Kang D M, Yan J B, Li J S. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize[J]. J Exp Bot, 2015, 66(13):3791-3802.doi:10.1093/jxb/erv182. [30] Jamie S,Guillaume T, Houry W A. The AAA+ superfamily of functionally diverse proteins[J]. Genome Biology, 2008, 9(4):1-8.doi:10.1186/gb-2008-9-4-216. [31] Azzaria M, Schurr E, Gros P. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance[J]. Molecular & Cellular Biology, 1989, 9(12):5289-5297.doi:10.1128/MCB.9.12.5289. [32] Beaudet L, Gros P. Functional dissection of P-glycoprotein nucleotide-binding domains in chimeric and mutant proteins. Modulation of drug resistance profiles[J]. Journal of Biological Chemistry, 1995, 270(29):17159-17170.doi:10.1074/jbc.270.29.17159. |