[1] 闫静, 石文鑫, 王美, 等. 第一类肽链释放因子C端结构域参与调控终止密码子的识别过程[J]. 中国生物化学与分子生物学报, 2017, 33(2):184-189.
[2] 黄红英. 纤毛虫肽链释放因子识别终止密码子特异性的功能位点分析[D]. 太原:山西大学, 2016.
[3] Vaishya S, Kumar V, Gupta A, et al. Polypeptide release factors and stop codon recognition in the apicoplast and mitochondrion of Plasmodium falciparum[J]. Molecular Microbiology, 2016, 100(6):1080-1095.
[4] Trappl K, Joseph S. Ribosome induces a closed to open conformational change in release factor 1[J]. Journal of Molecular Biology, 2016, 428(6):1333-1344.
[5] Polshakov V I, Eliseev B D, Birdsall B, et al. Structure and dynamics in solution of the stop codon decoding N-terminal domain of the human polypeptide chain release factor eRF1[J]. Protein Science:a Publication of the Protein Society, 2012, 21(6):896-903.
[6] Urakov V N, Mitkevich O V, Safenkova I V, et al. Ribosome-bound Pub1 modulates stop codon decoding during translation termination in yeast[J]. The FEBS Journal, 2017, 284(12):1914-1930.
[7] Frolova L, Seit-Nebi A, Kisselev L. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1[J]. RNA, 2002, 8(2):129-136.
[8] Inagaki Y, Blouin C, Doolittle W F, et al. Convergence and constraint in eukaryotic release factor 1(eRF1) domain 1:the evolution of stop codon specificity[J]. Nucleic Acids Research, 2002, 30(2):532-544.
[9] Song H, Mugnier P, Das A K, et al. The crystal structure of human eukaryotic release factor eRF1-mechanism of stop codon recognition and peptidyl-tRNA hydrolysis[J]. Cell, 2000, 100(3):311-321.
[10] Ito K, Ebihara K, Nakamura Y. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast[J]. RNA, 1998, 4(8):958-972.
[11] Pillay S, Li Y, Wong L E, et al. Structural characterization of eRF1 mutants indicate a complex mechanism of stop codon recognition[J]. Scientific Reports, 2016, 6:18644.
[12] Valouev I A, Kushnirov V, Teravanesyan M D. Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation[J]. Cytoskeleton, 2002, 52(3):161-173.
[13] Kochneva-Pervukhova N V, Alexandrov A I. Amyloid-Mediated sequestration of essential proteins contributes to mutant huntingtin toxicity in yeast[J]. PLoS One, 2012, 7(1):e29832.
[14] Petsch K A, Mylne J, Botella J R. Cosuppression of eukaryotic release factor 1-1 in Arabidopsis affects cell elongation and radial cell division[J]. Plant Physiology, 2005, 139(1):115-126.
[15] Zhou X, Peter C, Li L.Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development[J]. Journal of Experimental Botany, 2010, 61(2):357-367.
[16] Tang Y E, Liu K, Zhang J, et al. JcDREB2, a physic nut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic rice[J]. Frontiers in Plant Science, 2017, 8(e0131599):306-313.
[17] Wu C, Jiang P, Guo Y, et al. Isolation and characterization of Ulva prolifera actin1 gene and function verification of the 5'flanking region as a strong promoter[J]. Bioengineered, 2017, 21(2):1-10.
[18] Han Y J, Kim Y M, Hwang O J, et al. Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation[J]. Plant Cell Reports, 2015, 34(2):265-275.
[19] Masura S S, Parveez G K, Ti L L. Isolation and characterization of an oil palm constitutive promoter derived from a translationally control tumor protein (TCTP) gene[J]. Plant Physiology and Biochemistry, 2011, 49(7):701-708.
[20] Huang Z F, Wang G R, Huang H J, et al. Isolation and functional analysis of convolvulus arvensis EPSPS promoter[J]. Plant Molecular Biology Reporter, 2015, 33(6):1650-1658. |