[1] |
Gangappa S N, Botto J F.The multifaceted roles of HY5 in plant growth and development[J]. Molecular Plant, 2016, 9(10):1353-1365.doi: 10.1016/j.molp.2016.07.002.
|
[2] |
Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dröge-Laser W.A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation[J]. The Plant Cell, 2009, 21(6):1747-1761.doi: 10.1105/tpc.108.062968.
|
[3] |
Gibalová A, Reñák D, Matczuk K, Dupl'áková N, Cháb D, Twell D, Honys D.AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen[J]. Plant Molecular Biology, 2009, 70(5):581-601.doi: 10.1007/s11103-009-9493-y.
|
[4] |
Iven T, Strathmann A, Böttner S, Zwafink T, Heinekamp T, Guivarc'h A, Roitsch T, Dröge-Laser W.Homo-and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development[J]. The Plant Journal, 2010, 63(1):155-166.doi: 10.1111/j.1365-313X.2010.04230.x.
|
[5] |
Wei K F, Chen J, Wang Y M, Chen Y H, Chen S X, Lin Y N, Pan S, Zhong X J, Xie D X.Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research, 2012, 19(6):463-476.doi: 10.1093/dnares/dss026.
|
[6] |
Nijhawan A, Jain M, Tyagi A K, Khurana J P.Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2):323-324.doi: 10.1104/pp.107.112821.
|
[7] |
Baloglu M C, Eldem V, Hajyzadeh M, Unver T.Genome-wide analysis of the bZIP transcription factors in cucumber[J]. PLoS One, 2014, 9(4):e96014.doi: 10.1371/journal.pone.0096014.
|
[8] |
Liu J Y, Chen N N, Chen F, Cai B, dal Santo S, Tornielli G B, Pezzotti M, Cheng Z M M.Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine( Vitis vinifera)[J]. BMC Genomics, 2014, 15:281.doi: 10.1186/1471-2164-15-281.
|
[9] |
Wang Y Y, Zhang Y J, Zhou R, Dossa K, Yu J Y, Li D H, Liu A L, Mmadi M A, Zhang X R, You J.Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame[J]. PLoS One, 2018, 13(7):e0200850.doi: 10.1371/journal.pone.0200850.
|
[10] |
Liu M Y, Wen Y D, Sun W J, Ma Z T, Huang L, Wu Q, Tang Z Z, Bu T L, Li C L, Chen H.Genome-wide identification,phylogeny,evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat[J]. BMC Genomics, 2019, 20(1):483.doi: 10.1186/s12864-019-5882-z.
|
[11] |
Fan L X, Xu L, Wang Y, Tang M J, Liu L W.Genome-and transcriptome-wide characterization bZIP gene family identifies potential members involved in abiotic stress response and anthocyanin biosynthesis in radish( Raphanus sativus L.)[J]. Internal Journal Molecular Science, 2019, 20(24):6334.doi: 10.3390/ijms20246334.
|
[12] |
Herath V, Verchot J.Insight into the bZIP gene family in solanum tuberosum:genome and transcriptome analysis to understand the roles of gene diversification in spatiotemporal gene expression and function[J]. Internal Journal Molecular Science, 2021, 22(1):253.doi. 10.3390/ijms22010253.
|
[13] |
Rong S Y, Wu Z Y, Cheng Z Z, Zhang S, Liu H, Huang Q M.Genome-wide identification,evolutionary patterns,and expression analysis of bZIP gene family in olive( Olea europaea L.)[J]. Genes, 2020, 11(5):510.doi: 10.3390/genes11050510.
|
[14] |
Li H Y, Li L X, Shangguan G D, Jia C, Deng S N, Noman M, Liu Y L, Guo Y X, Han L, Zhang X M, Dong Y Y, Ahmad N, Du L N, Li H Y, Yang J.Genome-wide identification and expression analysis of bZIP gene family in Carthamus tinctorius L.[J]. Scientific Reports, 2020, 10(1):15521.doi: 10.1038/s41598-020-72390-z.
|
[15] |
Li H T, Gao W L, Xue C L, Zhang Y, Liu Z G, Zhang Y, Meng X W, Liu M J, Zhao J.Genome-wide analysis of the bHLH gene family in Chinese jujube( Ziziphus jujuba Mill.)and wild jujube[J]. BMC Genomics, 2019, 20(1):1-13.doi: 10.1186/s12864-019-5936-2.
|
[16] |
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science, 2005, 309(5737):1052-1056.doi: 10.1126/science.1115983.
|
[17] |
Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F.The Arabidopsis B-BOX protein BBX25 interacts with HY5,negatively regulating BBX22 expression to suppress seedling photomorphogenesis[J]. The Plant Cell, 2013, 25(4):1243-1257.doi: 10.1105/tpc.113.109751.
|
[18] |
Huang L F, Zhang H C, Zhang H Y, Deng X W, Wei N.HY 5 regulates nitrite reductase 1(NIR1)and ammonium transporter1;2(AMT1;2)in Arabidopsis seedlings[J]. Plant Science, 2015, 238:330-339.doi: 10.1016/j.plantsci.2015.05.004.
|
[19] |
Lozano-Sotomayor P, Chávez Montes R A, Silvestre-Vañó M, Herrera-Ubaldo H, Greco R, Pablo-Villa J, Galliani B M, Diaz-Ramirez D, Weemen M, Boutilier K, Pereira A, Colombo L, Madueño F, Marsch-Martínez N, de Folter S.Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana[J]. The Plant Journal, 2016, 88(3):437-451.doi: 10.1111/tpj.13264.
|
[20] |
Yan Q C, Wu F, Ma T T, Zong X F, Ma Q, Li J, Zhao Y F, Wang Y R, Zhang J Y.Comprehensive analysis of bZIP transcription factors uncovers their roles during dimorphic floret differentiation and stress response in Cleistogenes songorica[J]. BMC Genomics, 2019, 20(1):760.doi: 10.1186/s12864-019-6092-4.
|
[21] |
Ma H Z, Liu C, Li Z X, Ran Q J, Xie G N, Wang B M, Fang S, Chu J F, Zhang J R.ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology, 2018, 178(2):753-770.doi: 10.1104/pp.18.00436.
|
[22] |
Zhang Y, Yang X Q, Cao P, Xiao Z A, Zhan C, Liu M F, Nvsvrot T, Wang N.The bZIP53-IAA4 module inhibits adventitious root development in Populus[J]. Journal of Experimental Botany, 2020, 71(12):3485-3498.doi: 10.1093/jxb/eraa096.
|
[23] |
Sun X L, Li Y, Cai H, Bai X, Ji W, Ding X D, Zhu Y M.The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt,osmotic and drought stresses[J]. Journal of Plant Research, 2012, 125(3):429-438.doi: 10.1007/s10265-011-0448-4.
|
[24] |
Kim J B, Kang J Y, Kim S Y.Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance[J]. Plant Biotechnology Journal, 2004, 2(5):459-466.doi: 10.1111/j.1467-7652.2004.00090.x.
|
[25] |
Yang O, Popova O V, Süthoff U, L king I, Dietz K J, Golldack D.The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance[J]. Gene, 2009, 436(1/2):45-55.doi: 10.1016/j.gene.2009.02.010.
|
[26] |
Rolly N K, Imran Q M, Shahid M, Imran M, Khan M, Lee S U, Hussain A, Lee I J, Yun B W.Drought-induced AtbZIP62 transcription factor regulates drought stress response in Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 156:384-395.doi: 10.1016/j.plaphy.2020.09.013.
|
[27] |
Liu C T, Mao B G, Ou S J, Wang W, Liu L C, Wu Y B, Chu C C, Wang X P.OsbZIP71,a bZIP transcription factor,confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1/2):19-36.doi: 10.1007/s11103-013-0115-3.
|
[28] |
Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z.Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4):1938-1952.doi: 10.1104/pp.108.128199.
|
[29] |
Liu C T, Wu Y B, Wang X P.bZIP transcription factor OsbZIP52/RISBZ5:A potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6):1157-1169.doi: 10.1007/s00425-011-1564-z.
|
[30] |
Zhao P, Ye M H, Wang R Q, Wang D D, Chen Q.Systematic identification and functional analysis of potato( Solanum tuberosum L.)bZIP transcription factors and overexpression of potato bZIP transcription factor StbZIP-65 enhances salt tolerance[J]. International Journal of Biological Macromolecules, 2020, 161:155-167.doi: 10.1016/j.ijbiomac.2020.06.032.
|
[31] |
Geng X L, Zang X S, Li H R, Liu Z S, Zhao A J, Liu J, Peng H R, Yao Y Y, Hu Z R, Ni Z F, Sun Q X, Xin M M.Unconventional splicing of wheat TabZIP60 confers heat tolerance in transgenic Arabidopsis[J]. Plant Science, 2018, 274:252-260.doi: 10.1016/j.plantsci.2018.05.029.
|
[32] |
He Q, Cai H Y, Bai M Y, Zhang M, Chen F Q, Huang Y M, Priyadarshani S V G N, Chai M N, Liu L P, Liu Y H, Chen H H, Qin Y.A soybean bZIP transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in plant[J]. International Journal of Molecular Sciences, 2020, 21(13):4701.doi: 10.3390/ijms21134701.
|
[33] |
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K.AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. The Plant Cell, 2005, 17(12):3470-3488.doi: 10.1105/tpc.105.035659.
|
[34] |
Kang J Y, Choi H I, Im M Y, Kim S Y.Arabidopsis basic leucine zipper proteins that mediate stress responsive abscisic acid signaling[J]. The Plant Cell, 2002, 14(2):343-357.doi: 10.1105/tpc.010362.
|
[35] |
Zhao X Y, Bai X, Jiang C F, Li Z.Phosphoproteomic analysis of two contrasting maize inbred lines provides insights into the mechanism of salt-stress tolerance[J]. International Journal Molecular Sciences, 2019, 20(8):1886.doi: 10.3390/ijms20081886.
|
[36] |
|
|
Meng Q L,Zhao N J,Zhang Y W,Qu Y,Zhang H F,Hu Y G.Evaluation of drought resistance on maize inbred lines under special drought conditions[J]. Agricultural Research in the Arid Areas,2016,34(4):106-111.
|
[37] |
|
|
Jiang Q F,Yun H Y.Study on drought resistance,hydrotropism and anatomic structure of root system of maize inbred lines with different genotypes[J].Agricultural Research in the Arid Areas,2016,34(5):1-8.
|
[38] |
|
|
Li C,Qiao J F,Zhu W H,Dai S T,Huang L,Zhang M W,Liu J B.Differential expression of high temperature stress in anthesis stage related genes of maize inbred lines[J].Acta Agriculturae Boreali-Sinica,2019,34(1):1-11.
|
[39] |
|
|
Wen J R,Ke Y P,Yu X J,Liang X,Zhao C Y,Li R F,Shi H C.Evaluation of drought resistance in 54 maize I nbred lines under 20% PEG-6000 stress seedling stages[J].Journal of Maize Sciences,2021,29(1):46-53.
|
[40] |
Cao L R, Lu X M, Zhang P Y, Wang G R, Wei L, Wang T C.Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2019, 20(17):4103.doi: 10.3390/ijms20174103.
|
[41] |
Feng Y, Wang Y, Zhang G F, Gan Z Y, Gao M, Lü J H, Wu T, Zhang X Z, Xu X F, Yang S H, Han Z H.Group-C/S1 bZIP heterodimers regulate MdIPT5b to negatively modulate drought tolerance in apple species[J]. The Plant Journal, 2021, 107(2):399-417.doi: 10.1111/tpj.15296.
|
[42] |
Wei Y H, Wang X C, Zhang Z Y, Xiong S P, Meng X D, Zhang J, Wang L L, Zhang X J, Yu M Q, Ma X M.Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat( Triticum aestivum L.)[J]. International Journal of Molecular Sciences, 2020, 21(17):6299-6310.doi: 10.3390/ijms21176299.
|
[43] |
|
|
Zhong C,Jian S F.Study on the mechanisms of nitrogen nutrition regulated plant stress-acclimation[J]. Acta Agriculturae Boreali-Sinica,2020,35(S1):424-432.
|