[1] |
黄永震, 张桂民, 冯明祥, 邹勇, 文逸凡, 田伊然, 宋成创, 陈宏, 雷初朝. 关岭牛种质资源保护与肉用选育改良的问题与对策[J]. 中国牛业科学, 2017, 43(5):44-46,52.doi: 10.3969/j.issn.1001-9111.2017.05.010.
|
|
Huang Y Z, Zhang G M, Feng M X, Zou Y, Wen Y F, Tian Y R, Song C C, Chen H, Lei C C. Problems and countermeasures of the Guanling cattle conservation and selection[J]. China Cattle Science, 2017, 43(5):44-46,52.
|
[2] |
|
|
Liu P C. Regulation of TBC1D7 and GRB10 gene expression and its correlation with growth traits of Guanling cattle[D]. Guiyang: Guizhou University, 2021.
|
[3] |
Shi P F, Ruan Y, Liu W J, Sun J K, Xu J L, Xu H Q. Analysis of promoter methylation of the bovine FOXO1 gene and its effect on proliferation and differentiation of myoblasts[J]. Animals, 2023, 13(2):319.doi: 10.3390/ani13020319.
|
[4] |
Xu L X, Wang X, Wu J D, Wang H, Zhou W Z, Liu J, Ni M M, Zhang K K, Yu B, Lin R Y. Genetic variation analysis of Guanling cattle based on whole-genome resequencing[J]. Animal Bioscience, 2024, 37(12):2044-2053.doi: 10.5713/ab.24.0181.
|
[5] |
Zhu M M, Zhang T T, Xu D H, Zhou B J, Wang K G, Liao C S, Cheng Z T, Li P, Chen C. Impact of fermented wine lees on gut microbiota and metabolic responses in Guanling crossbred cattle[J]. BMC Microbiology, 2024, 24(1):421.doi: 10.1186/s12866-024-03583-z.
|
[6] |
Picard B, Berri C, Lefaucheur L, Molette C, Sayd T, Terlouw C. Skeletal muscle proteomics in livestock production[J]. Briefings in Functional Genomics, 2010, 9(3):259-278.doi: 10.1093/bfgp/elq005.
|
[7] |
Relaix F, Bencze M, Borok M J, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez P C, Rotini A, Taglietti V. Perspectives on skeletal muscle stem cells[J]. Nature Communications, 2021, 12(1):692.doi: 10.1038/s41467-020-20760-6.
|
[8] |
Kruk Z A, Bottema M J, Reyes-Veliz L, Forder R E A, Pitchford W S, Bottema C D K. Vitamin A and marbling attributes:intramuscular fat hyperplasia effects in cattle[J]. Meat Science, 2018,137:139-146.doi: 10.1016/j.meatsci.2017.11.024.
|
[9] |
Roy A, Kumar A. Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy[J]. Nature Communications, 2022, 13(1):2201.doi: 10.1038/s41467-022-29752-0.
|
[10] |
Ge L X, Dong X C, Gong X T, Kang J, Zhang Y, Quan F S. Mutation in myostatin 3'UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN[J]. International Journal of Biological Macromolecules, 2020,154:634-643.doi: 10.1016/j.ijbiomac.2020.03.043.
|
[11] |
Bentzinger C F, Wang Y X, Rudnicki M A. Building muscle:molecular regulation of myogenesis[J]. Cold Spring Harbor Perspectives in Biology, 2012, 4(2):a008342.doi: 10.1101/cshperspect.a008342.
|
[12] |
Black B L, Molkentin J D, Olson E N. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2[J]. Molecular and Cellular Biology, 1998, 18(1):69-77.doi: 10.1128/MCB.18.1.69.
|
[13] |
Wang L J, Fan C, Topol S E, Topol E J, Wang Q. Mutation of MEF2A in an inherited disorder with features of coronary artery disease[J]. Science, 2003, 302(5650):1578-1581.doi: 10.1126/science.1088477.
|
[14] |
Moustafa A, Hashemi S, Brar G, Grigull J, Ng S H S, Williams D, Schmitt-Ulms G, McDermott J C. The MEF2A transcription factor interactome in cardiomyocytes[J]. Cell Death & Disease, 2023, 14(4):240.doi: 10.1038/s41419-023-05665-8.
|
[15] |
Zhao X, Li X T, Shi X Y, Karpac J. Diet-MEF2 interactions shape lipid droplet diversification in muscle to influence Drosophila lifespan[J]. Aging Cell, 2020, 19(7):e13172.doi: 10.1111/acel.13172.
|
[16] |
Seaborne R A, Sharples A P. The interplay between exercise metabolism,epigenetics,and skeletal muscle remodeling[J]. Exercise and Sport Sciences Reviews, 2020, 48(4):188-200.doi: 10.1249/JES.0000000000000227.
|
[17] |
Zhou W D, Liang G N, Molloy P L, Jones P A. DNA methylation enables transposable element-driven genome expansion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32):19359-19366.doi: 10.1073/pnas.1921719117.
|
[18] |
Lu X F, Vano Y A, Su X P, Helleux A, Lindner V, Mouawad R, Spano J P, Rouprêt M, Compérat E, Verkarre V, Sun C M, Bennamoun M, Lang H, Barthelemy P, Cheng W X, Xu L, Davidson I, Yan F R, Fridman W H, Sautes-Fridman C, Oudard S, Malouf G G. Silencing of genes by promoter hypermethylation shapes tumor microenvironment and resistance to immunotherapy in clear-cell renal cell carcinomas[J]. Cell Reports Medicine, 2023, 4(11):101287.doi: 10.1016/j.xcrm.2023.101287.
|
[19] |
Umeh-Garcia M, O'Geen H, Simion C, Gephart M H, Segal D J, Sweeney C A. Aberrant promoter methylation contributes to LRIG1 silencing in basal/triple-negative breast cancer[J]. British Journal of Cancer, 2022, 127(3):436-448.doi: 10.1038/s41416-022-01812-8.
|
[20] |
Brunk B P, Goldhamer D J, Emerson J. Regulated demethylation of themyoDDistal enhancer during skeletal myogenesis[J]. Developmental Biology, 1996, 177(2):490-503.doi: 10.1006/dbio.1996.0180.
|
[21] |
Zhu Q, Liang F, Cai S F, Luo X R, Duo T Q, Liang Z Y, He Z Y, Chen Y S, Mo D L. KDM4A regulates myogenesis by demethylating H3K9me3 of myogenic regulatory factors[J]. Cell Death & Disease, 2021, 12(6):514.doi: 10.1038/s41419-021-03799-1.
|
[22] |
|
|
Wang Y F, Zhang Y, Hui M M, Chen X. Expression of MMP15 and PICK1 genes in goat testis[J]. Journal of Mountain Agriculture and Biology, 2023, 42(4):18-25.
|
[23] |
Shahjahan M. Skeletal muscle development in vertebrate animals[J]. Asian Journal of Medical and Biological Research, 2015, 1(2):139-148.doi: 10.3329/ajmbr.v1i2.25592.
|
[24] |
He S Q, Fu T T, Yu Y, Liang Q H, Li L Y, Liu J, Zhang X, Zhou Q, Guo Q Q, Xu D Q, Chen Y, Wang X L, Chen Y L, Liu J M, Gan Z J, Liu Y. IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay[J]. Journal of Clinical Investigation, 2021, 131(17):e143737.doi: 10.1172/JCI143737.
|
[25] |
Medrano J L, Naya F J. The transcription factor MEF2A fine-tunes gene expression in the atrial and ventricular chambers of the adult heart[J]. Journal of Biological Chemistry, 2017, 292(51):20975-20988.doi: 10.1074/jbc.M117.806422.
|
[26] |
Wang Y N, Mei C G, Su X T, Wang H B, Yang W C, Zan L S. MEF2A regulates the MEG3-DIO3 miRNA mega cluster-targeted PP2A signaling in bovine skeletal myoblast differentiation[J]. International Journal of Molecular Sciences, 2019, 20(11):2748.doi: 10.3390/ijms20112748.
|
[27] |
Wu J H, Ren B W, Wang D C, Lin H. Regulatory T cells in skeletal muscle repair and regeneration:recent insights[J]. Cell Death & Disease, 2022, 13(8):680.doi: 10.1038/s41419-022-05142-8.
|
[28] |
Estrella N L, Desjardins C A, Nocco S E, Clark A L, Maksimenko Y, Naya F J. MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation[J]. Journal of Biological Chemistry, 2015, 290(2):1256-1268.doi: 10.1074/jbc.M114.589838.
|
[29] |
Angeloni A, Bogdanovic O. Enhancer DNA methylation:implications for gene regulation[J]. Essays in Biochemistry, 2019, 63(6):707-715.doi: 10.1042/EBC20190030.
|
[30] |
Zyner K G, Simeone A, Flynn S M, Doyle C, Marsico G, Adhikari S, Portella G, Tannahill D, Balasubramanian S. G-quadruplex DNA structures in human stem cells and differentiation[J]. Nature Communications, 2022, 13(1):142.doi: 10.1038/s41467-021-27719-1.
|
[31] |
Misawa K, Kanazawa T, Misawa Y, Imai A, Uehara T, Mochizuki D, Endo S, Takahashi G, Mineta H. Frequent promoter hypermethylation of tachykinin-1 and tachykinin receptor type 1 is a potential biomarker for head and neck cancer[J]. Journal of Cancer Research and Clinical Oncology, 2013, 139(5):879-889.doi: 10.1007/s00432-013-1393-5.
|
[32] |
Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins[J]. Molecular and Cellular Biology, 1998, 18(11):6538-6547.doi: 10.1128/MCB.18.11.6538.
|
[33] |
Caretti G, Di Padova M, Micales B, Lyons G E, Sartorelli V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation[J]. Genes & Development, 2004, 18(21):2627-2638.doi: 10.1101/gad.1241904.
|
[34] |
Huang Y Z, Sun J J, Zhang L Z, Li C J, Womack J E, Li Z J, Lan X Y, Lei C Z, Zhang C L, Zhao X, Chen H. Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue( Bos taurine)[J]. Scientific Reports, 2014,4:6546.doi: 10.1038/srep06546.
|
[35] |
|
|
Fang X B, Yang R J. Research progress of DNA methylation in molecular genetics and breeding of beef cattle[J]. The Chinese Livestock and Poultry Breeding, 2023, 19(7):49-55.
|
[36] |
Zorzan E, Elgendy R, Guerra G, Da Ros S, Gelain M E, Bonsembiante F, Garaffo G, Vitale N, Piva R, Marconato L, Aresu L, Dacasto M, Giantin M. Hypermethylation-mediated silencing of CIDEA, MAL and PCDH17 tumour suppressor genes in canine DLBCL:from multi-omics analyses to mechanistic studies[J]. International Journal of Molecular Sciences, 2022, 23(7):4021.doi: 10.3390/ijms23074021.
|
[37] |
Wang R H, Su L F, Yu S T, Ma X, Jiang C D, Yu Y X. Inhibition of PHLDA2 transcription by DNA methylation and YY1 in goat placenta[J]. Gene, 2020,739:144512.doi: 10.1016/j.gene.2020.144512.
|
[38] |
Xu X X, Tao Y H, Gao X B, Zhang L, Li X F, Zou W G, Ruan K C, Wang F, Xu G L, Hu R G. A CRISPR-based approach for targeted DNA demethylation[J]. Cell Discovery, 2016,2:16009.doi: 10.1038/celldisc.2016.9.
|
[39] |
|
|
Yu X H. Study on the mechanism of PHAX K381 methylation modification mediated by METTL21C to regulate the proliferation of chicken DF-1 cells[D]. Xian: Shaanxi University of Technology, 2024.
|
[40] |
Juszczuk-Kubiak E, Flisikowski K, Wicińska K. Nucleotide sequence and variations of the bovine myocyte enhancer factor 2C(MEF2C)gene promoter in Bos taurus cattle[J]. Molecular Biology Reports, 2011, 38(2):1269-1276.doi: 10.1007/s11033-010-0226-8.
|
[41] |
Zhang S H, Shen L Y, Xia Y D, Yang Q, Li X W, Tang G Q, Jiang Y Z, Wang J Y, Li M Z, Zhu L. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs[J]. Scientific Reports, 2016,6:35063.doi: 10.1038/srep35063.
|
[42] |
Tomiga Y, Ito A, Sudo M, Ando S, Eshima H, Sakai K, Nakashima S, Uehara Y, Tanaka H, Soejima H, Higaki Y. One week,but not 12 hours,of cast immobilization alters promotor DNA methylation patterns in the nNOS gene in mouse skeletal muscle[J]. The Journal of Physiology, 2019, 597(21):5145-5159.doi: 10.1113/JP277019.
|