[1] |
doi: 10.1146/annurev-arplant-042811-105532
pmid: 22224450
|
[2] |
Cai J, Xia X L, Chen H B, Wang T, Zhang H L. Decomposition of fertilizer use intensity and its environmental risk in China's grain production process[J]. Sustainability, 2018, 10: 1-15. doi: 10.3390/SU10020498.
doi: 10.3390/SU10020498
URL
|
[3] |
Anas M, Liao F, Verma K K, Sarwar M A, Mahmood A, Chen Z L, Li Q, Zeng X P, Liu Y, Li Y R. Fate of nitrogen in agriculture and environment: Agronomic,eco-physiological and molecular approaches to improve nitrogen use efficiency[J]. Biological Research, 2020, 53(1): 47. doi: 10.1186/s40659-020-00312-4.
doi: 10.1186/s40659-020-00312-4
URL
|
[4] |
Michael Beman J, Arrigo K R, Matson P A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean[J]. Nature, 2005, 434(7030): 211-214. doi: 10.1038/nature03370.
doi: 10.1038/nature03370
URL
|
[5] |
Wu D X, Li Y, Cao Y N, Hu R P, Wu X, Zhang W, Tao W Q, Xu G H, Wang X C, Zhang Y L. Increased glutamine synthetase by overexpression of TaGS1 improves grain yield and nitrogen use efficiency in rice[J]. Plant Physiology and Biochemistry, 2021, 169: 259-268. doi: 10.1016/j.plaphy.2021.11.021.
doi: 10.1016/j.plaphy.2021.11.021
pmid: 34814097
|
[6] |
Wang F M, Yoshida H, Matsuoka M. Making the 'green revolution' truly green: Improving crop nitrogen use efficiency[J]. Plant and Cell Physiology, 2021, 62(6): 942-947. doi: 10.1093/pcp/pcab051.
doi: 10.1093/pcp/pcab051
URL
|
[7] |
姜琪, 陈志伟, 刘成洪, 何婷, 郭桂梅, 高润红, 徐红卫, 李颖波, 陆瑞菊, 黄剑华. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究[J]. 华北农学报, 2019, 34(1):148-155.doi: 10.7668/hbnxb.201751103.
doi: 10.7668/hbnxb.201751103
|
|
Jiang Q, Chen Z W, Liu C H, He T, Guo G M, Gao R H, Xu H W, Li Y B, Lu R J, Huang J H. Screening and identification indices of low-nitrogen tolerance for barley landraces at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 148-155.
doi: 10.7668/hbnxb.201751103
|
[8] |
Liu Q, Wu K, Song W Z, Zhong N, Wu Y Z, Fu X D. Improving crop nitrogen use efficiency toward sustainable green revolution[J]. Annual Review of Plant Biology, 2022, 73: 523-551. doi: 10.1146/annurev-arplant-070121-015752.
doi: 10.1146/annurev-arplant-070121-015752
pmid: 35595292
|
[9] |
姜琪, 陈志伟, 刘成洪, 何婷, 郭桂梅, 高润红, 徐红卫, 李颖波, 陆瑞菊, 黄剑华. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究[J]. 华北农学报, 2019, 34(1):148-155.doi: 10.7668/hbnxb.201751103.
doi: 10.7668/hbnxb.201751103
|
|
Jiang Q, Chen Z W, Liu C H, He T, Guo G M, Gao R H, Xu H W, Li Y B, Lu R J, Huang J H. Screening and identification indices of low-nitrogen tolerance for barley landraces at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 148-155.
doi: 10.7668/hbnxb.201751103
|
[10] |
Elakhdar A, Kumamaru T, Qualset C O, Brueggeman R S, Amer K, Capo-chichi L. Assessment of genetic diversity in Egyptian barley( Hordeum vulgare L.)genotypes using SSR and SNP markers[J]. Genetic Resources and Crop Evolution, 2018, 65(7): 1937-1951. doi: 10.1007/s10722-018-0666-x.
doi: 10.1007/s10722-018-0666-x
URL
|
[11] |
Dziurdziak J, Gryziak G, Groszyk J, Podyma W, Boczkowska M. DArTseq genotypic and phenotypic diversity of barley landraces originating from different countries[J]. Agronomy, 2021, 11(11):2330.doi: 10.3390/agronomy11112330.
doi: 10.3390/agronomy11112330
URL
|
[12] |
Marone D, Russo M A, Mores A, Ficco D B M, Laid G, Mastrangelo A M, Borrelli G M. Importance of landraces in cereal breeding for stress tolerance[J]. Plants, 2021, 10(7): 1267. doi: 10.3390/plants10071267.
doi: 10.3390/plants10071267
URL
|
[13] |
Liu Y Q, Wang H R, Jiang Z M, Wang W, Xu R N, Wang Q H, Zhang Z H, Li A F, Liang Y, Ou S J, Liu X J, Cao S Y, Tong H N, Wang Y H, Zhou F, Liao H, Hu B, Chu C C. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590(7847): 600-605. doi: 10.1038/s41586-020-03091-w.
doi: 10.1038/s41586-020-03091-w
URL
|
[14] |
Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice sub species[J]. Nature Genetics, 2015, 47(7): 834-838. doi: 10.1038/ng.3337.
doi: 10.1038/ng.3337
|
[15] |
Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal, 1982, 74(3): 562-564. doi: 10.2134/agronj1982.00021962007400030037x.
doi: 10.2134/agronj1982.00021962007400030037x
URL
|
[16] |
Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?[J]. Trends in Plant Science, 2004, 9(12): 597-605. doi: 10.1016/j.tplants.2004.10.008.
doi: 10.1016/j.tplants.2004.10.008
pmid: 15564127
|
[17] |
Yang L N, Hu H L, Zhu B, Jin X L, Wu F B, Zhang G P. Genotypic variations of N use efficiency in Tibetan wild and cultivated barleys[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 155-164.doi: 10.3785/j.issn.1008-9209.
doi: 10.3785/j.issn.1008-9209
|
[18] |
Karunarathne S D, Han Y, Zhang X Q, Zhou G F, Hill C B, Chen K F, Angessa T, Li C D. Genome-wide association study and identification of candidate genes for nitrogen use efficiency in barley( Hordeum vulgare L.)[J]. Frontiers in Plant Science, 2020, 11: 571912. doi: 10.3389/fpls.2020.571912.
doi: 10.3389/fpls.2020.571912
|
[19] |
魏杰, 朱新杰, 王后苗, 尹双义, 杨小艺, 孙辉, 李鹏程, 徐辰武. 氯酸盐处理对不同基因型玉米苗期性状的影响[J]. 南京农业大学学报, 2020, 43(3): 423-430. doi: 10.7685/jnau.201907052.
doi: 10.7685/jnau.201907052
|
|
Wei J, Zhu X J, Wang H M, Yin S Y, Yang X Y, Sun H, Li P C, Xu C W. Effect of chlorate treatment on traits related to different genotypes of maize at the seedling stage[J]. Journal of Nanjing Agricultural University, 2020, 43(3): 423-430.
|
[20] |
Mészáros A, Pauk J. Chlorate resistance as a tool to study the effect of nitrate reductase antisense gene in wheat[J]. Cereal Research Communications, 2002, 30(3/4): 245-252. doi: 10.1007/BF03543415.
doi: 10.1007/BF03543415
URL
|
[21] |
Siddiqi M Y, King B J, Glass A D M. Effects of nitrite,chlorate,and chlorite on nitrate uptake and nitrate reductase activity[J]. Plant Physiology, 1992, 100(2): 644-650. doi: 10.1104/pp.100.2.644.
doi: 10.1104/pp.100.2.644
pmid: 16653041
|
[22] |
Harper J E. Effect of chlorate,nitrogen source,and light on chlorate toxicity and nitrate reductase activity in soybean leaves[J]. Physiologia Plantarum, 1981, 53: 505-510. doi: 10.1111/J.1399-3054.1981.TB02741.X.
doi: 10.1111/J.1399-3054.1981.TB02741.X
URL
|
[23] |
Teng S, Tian C G, Chen M S, Zeng D L, Guo L B, Zhu L H, Han B, Qian Q. QTLs and candidate genes for chlorate resistance in rice( Oryza sativa L.)[J]. Euphytica, 2006, 152(2): 141-148. doi: 10.1007/s10681-006-9189-1.
doi: 10.1007/s10681-006-9189-1
URL
|
[24] |
McClure P, Omholt T E, Pace G. Anion uptake in maize roots: Interactions between chlorate and nitrate[J]. Physiologia Plantarum, 1986, 68: 107-112. doi: 10.1111/J.1399-3054.1986.TB06603.X.
doi: 10.1111/J.1399-3054.1986.TB06603.X
URL
|
[25] |
Karunarathne S D, Han Y, Zhang X Q, Dang V H, Angessa T T, Li C D. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley[J]. Molecular Breeding, 2021, 41(7): 1-13. doi: 10.1007/s11032-021-01239-8.
doi: 10.1007/s11032-021-01239-8
URL
|
[26] |
陈志伟, 邹磊, 陆瑞菊, 王亦菲, 何婷, 杜志钊, 张艳敏, 黄剑华. 不同基因型大麦苗期耐低氮性状与产量性状的相关性[J]. 麦类作物学报, 2010, 30(1): 158-162.
|
|
Chen Z W, Zou L, Lu R J, Wang Y F, He T, Du Z Z, Zhang Y M, Huang J H. Study on the relationship between the traits for low-nitrogen tolerance of different barley genotypes at seedling stage and grain yield[J]. Journal of Triticeae Crops, 2010, 30(1): 158-162.
|