[1] |
Han J Y, Kim H J, Kwon Y S, Choi Y E. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-Ⅱ during ginsenoside biosynthesis in Panax ginseng[J]. Plant and Cell Physiology, 2011, 52(12):2062-2073.doi: 10.1093/pcp/pcr150.
doi: 10.1093/pcp/pcr150
URL
|
[2] |
Manikandan P, Nagini S. Cytochrome P450 structure,function and clinical significance:A review[J]. Current Drug Targets, 2018, 19(1):38-54.doi: 10.2174/1389450118666170125144557.
doi: 10.2174/1389450118666170125144557
pmid: 28124606
|
[3] |
Singh A, Panwar R, Mittal P, Hassanc M I, Singh I K. Plant cytochrome P450s:Role in stress tolerance and potential applications for human welfare[J]. International Journal of Biological Macromolecules, 2021, 184:874-886.doi: 10.1016/J.IJBIOMAC.2021.06.125.
doi: 10.1016/J.IJBIOMAC.2021.06.125
URL
|
[4] |
Boachon B, Junker R R, Miesch L, Bassard J E, Höfer R, Caillieaudeaux R, Seidel D E, Lesot A, Heinrich C, Ginglinger J F, Allouche L, Vincent B, Wahyuni D S C, Paetz C, Beran F, Miesch M, Schneider B, Leiss K, Werck-Reichhart D. CYP76C1 (cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers:A strategy for defense against floral antagonists[J]. The Plant Cell, 2015, 27(10):2972-2990.doi: 10.1105/tpc.15.00399.
doi: 10.1105/tpc.15.00399
pmid: 26475865
|
[5] |
Ping A J, Rui L, Jia Q F, Xiang Y C, Fei W X, Jin H Y. Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2017, 483(1):1-9.doi: 10.1016/j.bbrc.2017.01.026.
doi: 10.1016/j.bbrc.2017.01.026
URL
|
[6] |
Xiao F M, Goodwin S M, Xiao Y M, Sun Z Y, Baker D, Tang X Y, Jenks M A, Zhou J M. Arabidopsis CYP86A2 represses Pseudomonas syringae type Ⅲ genes and is required for cuticle development[J]. The EMBO Journal, 2004, 23(14):2903-2913.doi: 10.1038/sj.emboj.7600290.
doi: 10.1038/sj.emboj.7600290
URL
|
[7] |
Chopra R, Burow G, Hayes C, Emendack Y, Xin Z G, Burke J. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs)in Sorghum genotypes with contrasting responses to cold stress[J]. BMC Genomics, 2015, 16(1):1040.doi: 10.1186/s12864-015-2268-8.
doi: 10.1186/s12864-015-2268-8
URL
|
[8] |
Wang M, Yuan J R, Qin L M, Shi W M, Xia G M, Liu S W. TaCYP81D5,one member in a wheat cytochrome P450 gene cluster,confers salinity tolerance via reactive oxygen species scavenging[J]. Plant Biotechnology Journal, 2020, 18(3):791-804.doi: 10.1111/pbi.13247.
doi: 10.1111/pbi.13247
URL
|
[9] |
Mao G, Seebeck T, Schrenker D, Yu O. CYP709B3,a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana[J]. BMC Plant Biology, 2013, 13(1):169.doi: 10.1186/1471-2229-13-169.
doi: 10.1186/1471-2229-13-169
URL
|
[10] |
Zhang Y Y, Liu J H, Zhou Y M, Gong T Y, Wang J, Ge Y L. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene)with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1[J]. Journal of Hazardous Materials, 2013, 260:1100-1107.doi: 10.1016/j.jhazmat.2013.06.065.
doi: 10.1016/j.jhazmat.2013.06.065
URL
|
[11] |
Yan Q, Cui X X, Lin S, Gan S P, Han X, Dou D L. GmCYP82A3,a Soybean cytochrome P450 family gene involved in the jasmonic acid and ethylene signaling pathway,enhances plant resistance to biotic and abiotic stresses[J]. PLoS One, 2016, 11(9):e0162253.doi: 10.1371/journal.pone.0162253.
doi: 10.1371/journal.pone.0162253
|
[12] |
Egbuta M A, McIntosh S, Waters D L E, Vancov T, Liu L. Biological importance of cotton by-products relative to chemical constituents of the cotton plant[J]. Molecules, 2017, 22(1):93.doi: 10.3390/molecules22010093.
doi: 10.3390/molecules22010093
URL
|
[13] |
Yan R, Liang C Z, Meng Z G, Malik W, Zhu T, Zong X F, Guo S D, Zhang R. Progress in genome sequencing will accelerate molecular breeding in cotton ( Gossypium spp.)[J]. 3 Biotech, 2016, 6(2):1-9.doi: 10.1007/s13205-016-0534-3.
doi: 10.1007/s13205-016-0534-3
URL
|
[14] |
Shaban M, Miao Y H, Ullah A, Khan A Q, Menghwar H, Khan A H, Ahmed M M, Tabassum M A, Zhu L F. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae[J]. Plant Physiology and Biochemistry, 2018, 125:193-204.doi: 10.1016/j.plaphy.2018.02.011.
doi: 10.1016/j.plaphy.2018.02.011
URL
|
[15] |
Zhou K X, Long L, Sun Q, Wang W N, Gao W, Chu Z Y, Cai C W, Mo J C, Cheng J R, Zhang X R, Liu Y J, Du X M, Miao C, Shi Y Z, Yuan Y L, Zhang X, Cai Y F. Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton[J]. Biologia, 2017, 72(1):43-52.doi: 10.1515/biolog-2017-0003.
doi: 10.1515/biolog-2017-0003
URL
|
[16] |
Wang G L, Xu J, Li L C, Guo Z, Si Q X, Zhu G Z, Wang X Y, Guo W Z. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways[J]. Plant Biotechnology Journal, 2020, 18(1):222-238.doi: 10.1111/pbi.13190.
doi: 10.1111/pbi.13190
URL
|
[17] |
Li Y, Zhou Y J, Dai P H, Ren Y P, Wang Q, Liu X D. Cotton Bsr-k1 modulates lignin deposition participating in plant resistance against Verticillium dahliae and Fusarium oxysporum[J]. Plant Growth Regulation, 2021, 95(2):283-292.doi: 10.1007/s10725-021-00742-4.
doi: 10.1007/s10725-021-00742-4
URL
|
[18] |
胡子曜, 代培红, 刘超, 玛迪娜·木拉提, 王倩, 吾尕力汗·阿不都维力, 赵燚, 孙玲, 徐诗佳, 李月, 陆地棉小GTP结合蛋白基因 GhROP3的克隆、表达及VIGS载体的构建[J]. 生物技术通报, 2021, 37(9):106-113.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0287.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0287
|
|
Hu Z Y, Dai P H, Liu C, Madina Mulati, Wang Q, Wugalihan Abuduwili, Zhao Y, Sun L, Xu S J, Li Y. Molecular cloning,expression and VIGS construction of a small GTP-binding protein gene GhROP3 in Gossypium hirsutum[J]. Biotechnology Bulletin, 2021, 37(9):106-113.
|
[19] |
doi: 10.3724/SP.J.1259.2012.00427
|
|
Yuan W, Wan H J, Yang Y J. Characterization and selection of reference genes for real-time quantitative RT-PCR of plants[J]. Chinese Bulletin of Botany, 2012, 47(4):427-436.
doi: 10.3724/SP.J.1259.2012.00427
URL
|
[20] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[21] |
沈吉丽, 肖胜华, 惠慧, 努日曼古丽·艾尼, 胡琴, 张晓君, 杨兆光, 聂新辉, 朱龙付. GhMYB43负调控木质素的生物合成和茉莉酸信号[J]. 棉花学报, 2020, 32(6):522-537.
|
|
Shen J L, Xiao S H, Xi H, Nurimanguli Aini, Hu Q, Zhang X J, Yang Z G, Nie X H, Zhu L F. GhMYB43 negatively regulates lignin biosynthesis and jasmonic acid signaling[J]. Cotton Science, 2020, 32(6):522-537.
|
[22] |
Zhang B L, Yang Y W, Chen T Z, Yu W G, Liu T L, Li H J, Fan X H, Ren Y Z, Shen D Y, Liu L, Dou D L, Chang Y H. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae[J]. PLoS One, 2012, 7(12):e51091.doi: 10.1371/journal.pone.0051091.
doi: 10.1371/journal.pone.0051091
URL
|
[23] |
Zhang X Y, Feng Z L, Zhao L H, Liu S C, Wei F, Shi Y Q, Feng H J, Zhu H Q. Succinate dehydrogenase SDH1 1 positively regulates cotton resistance to Verticillium dahliae through a salicylic acid pathway[J]. Journal of Cotton Research, 2020, 3(2):38-49.doi: 10.1186/s42397-020-00052-6.
doi: 10.1186/s42397-020-00052-6
|
[24] |
Xiong X P, Sun S C, Zhang X Y, Li Y J, Liu F, Zhu Q H, Xue F, Sun J. GhWRKY70D13 regulates resistance to Verticillium dahliae in cotton through the ethylene and jasmonic acid signaling pathways[J]. Frontiers in Plant Science, 2020, 11:69.doi: 10.3389/fpls.2020.00069.
doi: 10.3389/fpls.2020.00069
URL
|
[25] |
Zhu Y T, Hu X Q, Wang P, Gao L Y, Pei Y K, Ge Z Y, Ge X Y, Li F G, Hou Y X. GhPLP2 positively regulates cotton resistance to Verticillium Wilt by modulating fatty acid accumulation and jasmonic acid signaling pathway[J]. Frontiers in Plant Science, 2021, 12:749630.doi: 10.3389/FPLS.2021.749630.
doi: 10.3389/FPLS.2021.749630
URL
|
[26] |
Xiong X P, Sun S C, Zhu Q H, Zhang X Y, Liu F, Li Y J, Xue F, Sun J. Transcriptome analysis and RNA interference reveal GhGDH2 regulating cotton resistance to Verticillium wilt by JA and SA signaling pathways[J]. Frontiers in Plant Science, 2021, 12:654676.doi: 10.3389/FPLS.2021.654676.
doi: 10.3389/FPLS.2021.654676
URL
|
[27] |
Li X C, Sun Y, Liu N N, Wang P, Pei Y K, Liu D, Ma X W, Ge X Y, Li F G, Hou Y X. Enhanced resistance to Verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum[J]. Plant Science, 2019, 284:127-134.doi: 10.1016/j.plantsci.2019.04.013.
doi: 10.1016/j.plantsci.2019.04.013
URL
|
[28] |
Pei Y K, Li X C, Zhu Y T, Ge X Y, Sun Y, Liu N N, Jia Y J, Li F G, Hou Y X. GhABP19,a novel germin-like protein from Gossypium hirsutum,plays an important role in the regulation of resistance to Verticillium and Fusarium wilt pathogens[J]. Frontiers in Plant Science, 2019, 10:583.doi: 10.3389/fpls.2019.00583.
doi: 10.3389/fpls.2019.00583
URL
|
[29] |
Ma Q, Wang N H, Ma L, Lu J H, Wang H T, Wang C C, Yu S X, Wei H L. The cotton BEL1-like transcription factor GhBLH7-D06 negatively regulates the defense response against Verticillium dahliae[J]. International Journal of Molecular Sciences, 2020, 21(19):7126.doi: 10.3390/ijms21197126.
doi: 10.3390/ijms21197126
URL
|
[30] |
doi: 10.13271/j.mpb.018.001048
|
|
Li X Q, Li Y, Liu C, Dai P H, Liu X D. Cloning and functional identification of cotton Verticillium wilt related gene GhAAT[J]. Molecular Plant Breeding, 2020, 18(4):1048-1053.
|
[31] |
Zhang K, Zhao P, Wang H M, Zhao Y L, Chen W, Gong H Y, Sang X H, Cui Y L. Isolation and characterization of the GbVIP1 gene and response to Verticillium wilt in cotton and tobacco[J]. Journal of Cotton Research, 2019, 2(4):18-28.
doi: 10.1186/s42397-019-0035-0
URL
|
[32] |
Long L, Xu F C, Zhao J R, Li B, Xu L, Gao W. GbMPK3 overexpression increases cotton sensitivity to Verticillium dahliae by regulating salicylic acid signaling[J]. Plant Science, 2020, 292(C):110374.doi: 10.1016/j.plantsci.2019.110374.
doi: 10.1016/j.plantsci.2019.110374
|
[33] |
Zhu D D, Zhang X Y, Zhou J L, Wu Y J, Zhang X J, Feng Z L, Wei F, Zhao L H, Zhang Y L, Shi Y Q, Feng H J, Zhu H Q. Genome-wide analysis of ribosomal protein GhRPS6 and its role in cotton Verticillium wilt resistance[J]. International Journal of Molecular Sciences, 2021, 22(4):1795.doi: 10.3390/IJMS22041795.
doi: 10.3390/IJMS22041795
URL
|
[34] |
Zhao Y L, Jing H J, Zhao P, Chen W, Li X L, Sang X H, Lu J H, Wang H M. GhTBL34 is associated with Verticillium wilt resistance in cotton[J]. International Journal of Molecular Sciences, 2021, 22(17):9115.doi: 10.3390/IJMS22179115.
doi: 10.3390/IJMS22179115
URL
|
[35] |
Liu Y J, Liu X, Long L, Wang W N, Sun Q, Li B, Wang C X, Cheng J R, Zhang Y Y, Xie Y H, Xu L L, Qin R K, Mo J C, Shi Y Z, Chu Z Y, Yuan Y L, Cai Y F. GbABR1 is associated with Verticillium wilt resistance in cotton[J]. Biologia, 2018, 73(5):449-457.doi: 10.2478/s11756-018-0058-x.
doi: 10.2478/s11756-018-0058-x
URL
|
[36] |
Zhang W W, Zhang H C, Liu K, Jian G L, Qi F J, Si N. Large-scale identification of Gossypium hirsutum genes associated with Verticillium dahliae by comparative transcriptomic and reverse genetics analysis[J]. PLoS One, 2017, 12(8):e0181609.doi: 10.1371/journal.pone.0181609.
doi: 10.1371/journal.pone.0181609
URL
|
[37] |
doi: 10.3864/j.issn.0578-1752.2014.13.001
|
|
Li W Q, Wang F Q, Wang J, Fan F J, Zhu J Y, Yang J, Shao M, Zhong W G. Study on resistance mechanism to blast mediated by P450 gene Oscyp71Z2 in rice[J]. Scientia Agricultura Sinica, 2014, 47(13):2485-2493.
|
[38] |
Zhou N, Tootle T L, Glazebrook J. Arabidopsis PAD3,a gene required for camalexin biosynthesis,encodes a putative cytochrome P450 monooxygenase[J]. The Plant Cell, 1999, 11(12):2419-2428.doi: 10.1105/tpc.11.12.2419.
doi: 10.1105/tpc.11.12.2419
URL
|
[39] |
Maeda S, Dubouzet J G, Kondou Y, Jikumaru Y, Seo S, Oda K, Matsui M, Hirochika H, Mori M. The rice CYP78A gene BSR2 confers resistance to Rhizoctonia solani and affects seed size and growth in Arabidopsis and rice[J]. Scientific Reports, 2019, 9(1):1-14.doi: 10.1038/s41598-018-37365-1.
doi: 10.1038/s41598-018-37365-1
URL
|
[40] |
Li X, Zhang J B, Song B, Li H P, Xu H Q, Qu B, Dang F J, Liao Y C. Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene[J]. Phytopathology, 2010, 100(2):183-191.doi: 10.1094/PHYTO-100-2-0183.
doi: 10.1094/PHYTO-100-2-0183
pmid: 20055652
|
[41] |
Liu F, Jiang H L, Ye S Q, Chen W P, Liang W X, Xu Y X, Sun B, Sun J Q, Wang Q M, Cohen J D, Li C Y. The Arabidopsis P450 protein CYP82C2 modulates jasmonateinduced root growth inhibition,defense gene expression and indole glucosinolate biosynthesis[J]. Cell Research, 2010(5):539-552.doi: 10.1038/cr.2010.36.
doi: 10.1038/cr.2010.36
|
[42] |
张翼, 邵冬南, 薛飞, 李虎情, 王学峰, 李艳军, 张新宇, 刘峰, 孙杰. 陆地棉细胞色素P450超家族基因 GhCYP85A2-1的克隆与功能分析[J]. 新疆农业科学, 2021, 58(2):197-205.doi: 10.6048/j.issn.1001-4330.2021.02.001.
doi: 10.6048/j.issn.1001-4330.2021.02.001
|
|
Zhang Y, Shao D N, Xue F, Li H Q, Wang X F, Li Y J, Zhang X Y, Liu F, Sun J. Cloning and functional analysis of cytochrome P450 superfamily gene GhCYP85A2-1 in upland cotton[J]. Xinjiang Agricultural Sciences, 2021, 58(2):197-205.
|
[43] |
doi: 10.13880/j.cnki.65-1174/n.2017.01.011
|
|
Xin S, Li R, Xie Q L, Kou W, Li H B. Overexpression of a GhCYP714A1 gene encoding cytochrome P450 gene promotes the H2O2 accumulation in transgenic tobacco plant[J]. Journal of Shihezi University (Natural Science), 2017, 35(1):65-69.
|
[44] |
Gu L J, Dou L L, Guo Y N, Wang H T, Li L B, Wang C C, Ma L, Wei H L, Yu S X. The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton ( Gossypium hirsutum L.)[J]. BMC Plant Biology, 2019, 19(1):116.doi: 10.1186/s12870-019-1688-z.
doi: 10.1186/s12870-019-1688-z
|
[45] |
Sun L Q, Zhu L F, Xu L, Yuan D J, Min L, Zhang X L. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway[J]. Nature Communications, 2014, 5(1):5372.doi: 10.1038/ncomms6372.
doi: 10.1038/ncomms6372
URL
|