[1] Weng Y Q. Genetic diversity among Cucumis metuliferus populations revealed by cucumber microsatellites[J]. HortScience,2010,45(2):214-219.doi:10.21273/hortsci.45.2.214. [2] Ye D Y,Qian C T,Kurowski C. Identification of a novel source of resistance to the root-knot nematode Meloidogyne Incognita in Cucumis[J]. Russian Journal of Nematology,2012,20(1):45-51. [3] López-Gómez M,Flor-Peregrín E,Talavera M,Verdejo-Lucas S. Suitability of zucchini and cucumber genotypes to populations of Meloidogyne arenaria, M. incognita,and M. javanica[J]. Journal of Nematology,2015,47(1):79-85. [4] Chen J F,Adelberg J. Interspecific hybridization in Cucumis -progress,problems,and perspectives[J]. HortScience,2000,35(1):11-15.doi:10.21273/hortsci.35.1.11. [5] 叶德友,钱春桃,陈劲枫. 抗南方根结线虫黄瓜-酸黄瓜渐渗系的筛选及鉴定[J].园艺学报,2011,38(12):2281-2288.doi:10.16420/j.issn.0513-353x.2011.12.012. Ye D Y,Qian C T,Chen J F. Screening and identification of cucumber-sour cucumber introgression lines resistant to the root-knot nematode Meloidogyne incognita[J]. Acta Horticulturae Sinica,2011,38(12):2281-2288. [6] de Souza Galatti F,Franco A J,Ito L A,de Oliveira Charlo H,Gaion L A,Braz L T. Rootstocks resistant to Meloidogyne incognita and compatibility of grafting in net melon[J]. Revista Ceres,2013,60(3):432-436.doi:10.1590/s0034-737x2013000300018. [7] 马金慧,茆振川,李惠霞,谢丙炎. 刺角瓜对南方根结线虫的抗性及特征分析[J].园艺学报,2014,41(1):73-79.doi:10.16420/j.issn.0513-353x.2014.01.011. Ma J H,Mao Z C,Li H X,Xie B Y. Resistance identification of Cucumis metuliferus to Meloidogyne incognita and characteristic analysis[J]. Acta Horticulturae Sinica,2014,41(1):73-79. [8] 魏偲,史倩倩,马玉琴,马金慧,茆振川,凌键,杨宇红,谢丙炎. 不同温度下刺角瓜过氧化物酶基因的表达及其对抗南方根结线虫作用的影响[J].园艺学报,2016,43(8):1537-1544.doi:10.16420/j.issn.0513-353x.2016-0233. Wei C,Shi Q Q,Ma Y Q,Ma J H,Mao Z C,Ling J,Yang Y H,Xie B Y. Effects of peroxidase gene to the resistance of Cucumis metuliferus against Meloidogyne incognita in different temperature[J]. Acta Horticulturae Sinica,2016,43(8):1537-1544. [9] Ye D Y,Qi Y H,Cao S F,Wei B Q,Zhang H S. Histopathology combined with transcriptome analyses reveals the mechanism of resistance to Meloidogyne incognita in Cucumis metuliferus[J]. Journal of Plant Physiology,2017,212:115-124.doi:10.1016/j.jplph.2017.02.002. [10] Ling J,Mao Z C,Zhai M J,Zeng F,Yang Y H,Xie B Y. Transcriptome profiling of Cucumis metuliferus infected by Meloidogyne incognita provides new insights into putative defense regulatory network in Cucurbitaceae[J]. Scientific Reports,2017,7:3544.doi:10.1038/s41598-017-03563-6. [11] Li R J,Rashotte A M,Singh N K,Weaver D B,Lawrence K S,Locy R D. Integrated signaling networks in plant responses to sedentary endoparasitic Nematodes:A perspective[J]. Plant Cell Reports,2015,34(1):5-22.doi:10.1007/s00299-014-1676-6. [12] Hewezi T,Baum T J. Gene silencing in nematode feeding sites[J]. Advances in Botanical Research,2015,73:221-239.doi:10.1016/bs.abr.2014.12.007. [13] Shukla N,Kaur P,Kumar A. Molecular aspects of plant-nematode interactions[J]. Indian Journal of Plant Physiology,2016,21(4):477-488.doi:10.1007/s40502-016-0263-y. [14] Cabrera J,Barcala M,García A,Rio-Machín A,Medina C,Jaubert-Possamai S,Favery B,Maizel A,Ruiz-Ferrer V,Fenoll C,Escobar C. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica:A functional role for miR390 and its TAS3-derived tasiRNAs[J]. The New Phytologist,2016,209(4):1625-1640.doi:10.1111/nph.13735. [15] Ali M,Anjam M,Nawaz M,Lam H M,Chung G. Signal transduction in plant nematode interactions[J]. International Journal of Molecular Sciences,2018,19(6):1648.doi:10.3390/ijms19061648. [16] Hewezi T,Maier T R,Nettleton D,Baum T J. The Arabidopsis MicroRNA396-GRF1/GRF3 regulatory module Acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection[J]. Plant Physiology,2012,159(1):321-335.doi:10.1104/pp.112.193649. [17] Xu M Y,Li Y H,Zhang Q X,Xu T,Qiu L J,Fan Y L,Wang L. Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4[J]. PLoS One,2014,9(10):e110051.doi:10.1371/journal.pone.0110051. [18] Tian B,Wang S C,Todd T C,Johnson C D,Tang G L,Trick H N. Genome-wide identification of soybean microRNA responsive to soybean cyst Nematodes infection by deep sequencing[J]. BMC Genomics,2017,18(1):572.doi:10.1186/s12864-017-3963-4. [19] Hewezi T,Howe P,Maier T R,Baum T J. Arabidopsis small RNAs and their targets during cyst nematode parasitism[J]. Molecular Plant-Microbe Interactions,2008,21(12):1622-1634.doi:10.1094/mpmi-21-12-1622. [20] Hewezi T,Piya S,Qi M S,Balasubramaniam M,Rice J H,Baum T J. Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility[J]. The Plant Journal,2016,88(2):179-192.doi:10.1111/tpj.13238. [21] Piya S,Kihm C,Rice J H,Baum T J,Hewezi T. Cooperative regulatory functions of miR858 and MYB83 during cyst nematode parasitism[J]. Plant Physiology,2017,174(3):1897-1912.doi:10.1104/pp.17.00273. [22] Zhao W C,Li Z L,Fan J W,Hu C L,Yang R,Qi X,Chen H,Zhao F K,Wang S H. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato[J]. Journal of Experimental Botany,2015,66(15):4653-4667.doi:10.1093/jxb/erv238. [23] Curaba J,Singh M B,Bhalla P L. miRNAs in the crosstalk between phytohormone signalling pathways[J]. Journal of Experimental Botany,2014,65(6):1425-1438.doi:10.1093/jxb/eru002. [24] Schommer C,Debernardi J M,Bresso E G,Rodriguez R E,Palatnik J F. Repression of cell proliferation by miR319-regulated TCP4[J]. Molecular Plant,2014,7(10):1533-1544.doi:10.1093/mp/ssu084. [25] Medina C,da Rocha M,Magliano M,Ratpopoulo A,Revel B,Marteu N,Magnone V,Lebrigand K,Cabrera J,Barcala M,Silva A C,Millar A,Escobar C,Abad P,Favery B,Jaubert-Possamai S. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita[J]. The New Phytologist,2017,216(3):882-896.doi:10.1111/nph.14717. [26] Ling J,Jiang W J,Zhang Y,Yu H J,Mao Z C,Gu X F,Huang S W,Xie B Y. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics,2011,12:471.doi:10.1186/1471-2164-12-471. [27] Mao W H,Li Z Y,Xia X J,Li Y D,Yu J Q. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of MicroRNAs and their targets in cucumber[J]. PLoS One,2012,7(3):e33040.doi:10.1371/journal.pone.0033040. [28] Hu J H,Sun L L,Zhu Z X,Zheng Y,Xiong W,Ding Y. Characterization of conserved microRNAs from five different cucurbit species using computational and experimental analysis[J]. Biochimie,2014,102:137-144.doi:10.1016/j.biochi.2014.03.002. [29] Escobar C,Barcala M,Cabrera J,Fenoll C. Overview of root-knot Nematodes and giant cells[J]. Advances in Botanical Research,2015,73:1-32.doi:10.1016/bs.abr.2015.01.001. [30] Yang X Y,Wang L C,Yuan D J,Lindsey K,Zhang X L. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis[J]. Journal of Experimental Botany,2013,64(6):1521-1536.doi:10.1093/jxb/ert013. [31] Koter M D,Święcicka M,Matuszkiewicz M,Pacak A,Derebecka N,Filipecki M. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode[J]. Plant Science,2018,268:18-29.doi:10.1016/j.plantsci.2017.12.003. [32] Pan X P,Nichols R L,Li C,Zhang B H. MicroRNA-target gene responses to root knot nematode(Meloidogyne incognita)infection in cotton(Gossypium hirsutum L.)[J]. Genomics,2019,111(3):383-390.doi:10.1016/j.ygeno.2018.02.013. [33] Kaur P,Shukla N,Joshi G,VijayaKumar C,Jagannath A,Agarwal M,Goel S,Kumar A. Genome-wide identification and characterization of miRNAome from tomato(Solanum lycopersicum)roots and root-knot nematode(Meloidogyne incognita)during susceptible interaction[J]. PLoS One,2017,12(4):e0175178.doi:10.1371/journal.pone.0175178. [34] Li X Y,Wang X,Zhang S P,Liu D W,Duan Y X,Dong W. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing[J]. PLoS One,2012,7(6):e39650.doi:10.1371/journal.pone.0039650. [35] Siddique S,Grundler F M. Parasitic Nematodes manipulate plant development to establish feeding sites[J]. Current Opinion in Microbiology,2018,46:102-108.doi:10.1016/j.mib.2018.09.004. [36] Kohli D,Joshi G,Deokar A A,Bhardwaj A R,Agarwal M,Katiyar-Agarwal S,Srinivasan R,Jain P K. Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing[J]. PLoS One,2014,9(10):e108851.doi:10.1371/journal.pone.0108851. |