[1] Orsi C H, Tanksley S D. Natural variation in an ABC transporter gene associated with seed size evolution in tomato species[J]. PLoS Genet, 2009, 5(1):e1000347.doi:10.1371/journal.pgen.1000347. [2] Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M. Control of plant organ size by KLUH/CYP78A5 -dependent intercellular signaling[J]. Developmental Cell, 2007, 13(6):843-856.doi:10.1016/j.devcel.2007.10.001. [3] Liu C W, Li X H, Thompson D, Wooding K, Chang T L, Tang Z Y, Yu H T, Thomas P J, DeMartino G N. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome[J]. Mol Cell, 2006, 24(1):39-50.doi:10.1016/j.molcel.2006.08.025. [4] Powell A E, Lenhard M. Control of organ size in plants[J]. Curr Biol, 2012, 22(9):360-367.doi:10.1016/j.cub.2012.02.010. [5] Krizek B A. Making bigger plants:key regulators of final organ size[J]. Curr Opin Plant Biol, 2009, 12(1):17-22.doi:10.1016/j.pbi.2008.09.006. [6] Mizukami Y, Fischer R L. Plant organ size control:AINTEGUMENTA regulates growth and cell numbers during organogenesis[J]. Proc Natl Acad Sci, 2000, 97(2):942-947.doi:10.1073/pnas.97.2.942. [7] Hu Y X, Xie Q, Chua N H. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size[J]. The Plant Cell, 2003, 15(9):1951-1961.doi:10.1105/tpc.013557. [8] Horiguchi G, Kim G T, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant J, 2005, 43(1):68-78.doi:10.1111/j.1365-313X.2005.02429.x. [9] Kazama T Q, Ichihashi Y, Murata S, Tsukaya H. The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana[J]. Plant Cell Physiol, 2010, 51(6):1046-1054.doi:10.1093/pcp/pcq051. [10] Dinneny J R, Yadegari R, Fischer R L, Yanofsky M F, Weigel D. The role of JAGGED in shaping lateral organs[J]. Development, 2004, 131:1101-1110.doi:10.1242/dev.00949. [11] Wen J Q, Lease K A, Walker J C. DVL, a novel class of small polypeptides:overexpression alters Arabidopsis development[J]. Plant J, 2004, 37(5):668-677.doi:10.1111/j.1365-313x.2003.01994.x. [12] Li N, Li Y H. Ubiquitin-mediated control of seed size in plants[J]. Front Plant Sci, 2014, 5:332.doi:10.3389/fpls.2014.00332. [13] Disch S, Anastasiou E, Sharma V K, Laux T, Fletcher J C, Lenhard M. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner[J]. Curr Biol, 2006, 16(3):272-279.doi:10.1016/j.cub.2005.12.026. [14] Li Y H, Zheng L Y, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana[J]. Genes Dev, 2008, 22:1331-1336.doi:10.1101/gad.463608. [15] Szécsi J, Joly C, Bordji K, Varaud E, Cock J M, Dumas C, Bendahmane M. BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size[J]. EMBO J, 2006, 25(16):3912-3920.doi:10.1038/sj.emboj.7601270. [16] Varaud E, Brioudes F, Szecsi J, Leroux J, Brown S, Perrot-Rechenmann C, Bendahmane M. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp[J]. Plant Cell, 2011, 23(3):973-983.doi:10.1105/tpc.110.081653. [17] Du L, Li N, Chen L L, Xu Y X, Li Y, Zhang Y Y, Li C Y, Li Y H. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis[J]. The Plant Cell, 2014, 26(2):665-677.doi:10.1105/tpc.114.122663. [18] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi P. Genome sequencing reveals agronomically important loci in rice using MutMap[J]. Nat Biotechnol, 2012, 30(2):174-178.doi:10.1038/nbt.2095. [19] 袁金红,李俊华,袁娇娇,贾克利,李书粉,邓传良,高武军.基于全基因组测序的MutMap方法在正向遗传学研究中的应用[J].遗传,2017,39(12):1168-1177.doi:10.16288/j.yczz.17-095. Yuan J H, Li J H, Yuan J J, Jia K L, Li S F, Deng C L, Gao W J. The application of MutMap in forward genetic studies based on whole-genome sequencing[J]. Hereditas,2017,39(12):1168-1177. [20] Friedmann E, Lemberg M K, Weihofen A, Dev K K, Dengler U, Rovelli G, Martoglio B. Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins[J]. J Biol Chem, 2004, 279(49):50790-50798.doi:10.1074/jbc.M407898200. [21] Tamura T, Asakura T, Uemura T, Ueda T, Terauchi K, Misaka T, Abe K. Signal peptide peptidase and its homologs in Arabidopsis thaliana-plant tissue-specific expression and distinct subcellular localization[J]. FEBS J, 2008, 275(1):34-43.doi:10.1111/j.1742-4658.2007.06170.x. [22] Krawitz P, Haffner C, Fluhrer R, Steiner H, Schmid B, Haass C. Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3[J]. J Biol Chem, 2005, 280(47):39515-39523.doi:10.1074/jbc.M501645200. [23] Casso D J, Tanda S, Biehs B, Martoglio B, Kornberg T B. Drosophila signal peptide peptidase is an essential protease for larval development[J]. Genetics, 2005, 170(1):139-148.doi:10.1534/genetics.104.039933. [24] Fabbri M, Delp G, Schmidt O, Theopold U. Animal and plant members of a gene family with similarity to alkaloid-synthesizing enzymes[J]. Biochemical and Biophysical Research Communications, 2000,271(1):191-196.doi:10.1006/bbrc.2000.2598. |