| [1] |
Nag M, Lahiri D, Garai S, Mukherjee D, Ray R R. Regulation of β-amylase synthesis:a brief overview[J]. Molecular Biology Reports, 2021, 48(9):6503-6511.doi: 10.1007/s11033-021-06613-5.
|
| [2] |
Raveendran S, Parameswaran B, Ummalyma S B, Abraham A, Mathew A K, Madhavan A, Rebello S, Pandey A. Applications of microbial enzymes in food industry[J]. Food Technology and Biotechnology, 2018, 56(1):16-30.doi: 10.17113/ftb.56.01.18.5491.
pmid: 29795993
|
| [3] |
Gopinath S C B, Anbu P, Md Arshad M K, Lakshmipriya T, Voon C H, Hashim U, Chinni S V. Biotechnological processes in microbial amylase production[J]. BioMed Research International, 2017, 2017(1): 1272193.doi: 10.1155/2017/1272193.
|
| [4] |
Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith A M, Smith S M, Zeeman S C. Beta-AMYLASE4,a noncatalytic protein required for starch breakdown,acts upstream of three active beta-amylases in Arabidopsis chloroplasts[J]. The Plant Cell, 2008, 20(4):1040-1058.doi: 10.1105/tpc.107.056507.
URL
|
| [5] |
Wang S M, Lue W L, Eimert K, Chen J. Phytohormone-regulated β-amylase gene expression in rice[J]. Plant Molecular Biology, 1996, 31(5):975-982.doi: 10.1007/BF00040716.
pmid: 8843940
|
| [6] |
Zanella M, Borghi G L, Pirone C, Thalmann M, Pazmino D, Costa A, Santelia D, Trost P, Sparla F. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress[J]. Journal of Experimental Botany, 2016, 67(6):1819-1826.doi: 10.1093/jxb/erv572.
pmid: 26792489
|
| [7] |
Monroe J D, Storm A R. Review:the Arabidopsis β-amylase (BAM) gene family:diversity of form and function[J]. Plant Science, 2018, 276:163-170.doi: 10.1016/j.plantsci.2018.08.016.
URL
|
| [8] |
Zhao L Y, Gong X, Gao J Z, Dong H Z, Zhang S L, Tao S T, Huang X S. Transcriptomic and evolutionary analyses of white pear ( Pyrus bretschneideri) β-amylase genes reveals their importance for cold and drought stress responses[J]. Gene, 2019, 689:102-113.doi: 10.1016/j.gene.2018.11.092.
|
| [9] |
|
|
Huang X F, Bi C Y, Huang W Q, Liu J H, Hu Y Z, Huang B F, Lin S Q, Chen X Y. Genome-wide identification and expression analysis of the β-amylase gene family in Ipomoea batatas[J]. Journal of South China Agricultural University, 2021, 42(5):50-59.
|
| [10] |
Li T T, Li M Z, Jiang Y M, Duan X W. Genome-wide identification,characterization and expression profile of glutaredoxin gene family in relation to fruit ripening and response to abiotic and biotic stresses in banana ( Musa acuminata)[J]. International Journal of Biological Macromolecules, 2021, 170:636-651.doi: 10.1016/j.ijbiomac.2020.12.167.
URL
|
| [11] |
|
|
Wu Y, Peng T. Expression analysis of seven β-amylase encoding gene PtrBAM2—PtrBAM8 in Poncirus trifoliata under various treatments[J]. Molecular Plant Breeding, 2022, 20(13):4282-4288.
|
| [12] |
Xu X M, Tang Q H. Meteorological disaster frequency at prefecture-level city scale and induced losses in mainland China during 2011—2019[J]. Natural Hazards, 2021, 109(1):827-844.doi: 10.1007/s11069-021-04858-8.
|
| [13] |
Brimelow J C, Burrows W R, Hanesiak J M. The changing hail threat over North America in response to anthropogenic climate change[J]. Nature Climate Change, 2017, 7(7):516-522.doi: 10.1038/nclimate3321.
|
| [14] |
|
|
Zhao J T, Yue Y J, Wang J A, Yin Y Y, Feng H Y. Study on spatio temporal pattern of hail disaster in China mainland from 1950 to 2009[J]. Chinese Journal of Agrometeorology, 2015, 36(1):83-92.
|
| [15] |
|
|
Wang Y, Wang S G, Wang X, Ma Y. Temporal and spatial distribution and hazard assessment of hail disasters during crop growth period in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6):149-157.
|
| [16] |
Jing Y Y, Chen Y C, Ma X C, Ma J L, Li X, Ma N K, Bi K. Characteristics of summer hailstorms observed by radar and himawari-8 in Beijing,China[J]. Remote Sensing, 2022, 14(22):5843.doi: 10.3390/rs14225843.
URL
|
| [17] |
|
|
Shi J L, Su L J, Fan R X, Xu Z L, Yu S Y, Yi N N, Wang L. Characteristics of hail change in Bayannur,Inner Mongolia from 1970 to 2019[J]. Meteorological Science and Technology, 2025, 53(1):72-79.
|
| [18] |
McGregor D I. Effect of plant density on development and yield of rapeseed and its significance to recovery from hail injury[J]. Canadian Journal of Plant Science, 1987, 67(1):43-51.doi: 10.4141/cjps87-005.
URL
|
| [19] |
Counce P A, Wells B R, Norman R J, Leong J. Simulated hail damage to rice:Ⅱ.effects during four reproductive growth stages[J]. Agronomy Journal, 1994, 86(6):1113-1118.doi: 10.2134/agronj1994.00021962008600060035x.
URL
|
| [20] |
Sisson A J, Kandel Y R, Hart C E, Asmus A, Wiggs S N, Mueller D S. Effect of foliar fungicide and insecticide on hail-damaged soybean[J]. Plant Health Progress, 2016, 17(2):141-148.doi: 10.1094/php-rs-16-0012.
URL
|
| [21] |
Eggenberger S, Diaz-Arias M M, Gougherty A V, Nutter F W Jr, Sernett J, Robertson A E. Dissemination of goss's wilt of corn and epiphytic Clavibacter michiganensis subsp.nebraskensis from inoculum point sources[J]. Plant Disease, 2016, 100(4):686-695.doi: 10.1094/PDIS-04-15-0486-RE.
pmid: 30688625
|
| [22] |
Lei K Q, Sun S Z, Zhong K T, Li S Y, Hu H, Sun C J, Zheng Q M, Tian Z W, Dai T B, Sun J Y. Seed soaking with melatonin promotes seed germination under chromium stress via enhancing reserve mobilization and antioxidant metabolism in wheat[J]. Ecotoxicology and Environmental Safety, 2021,220:112241.doi: 10.1016/j.ecoenv.2021.112241.
|
| [23] |
Park S, Back K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination[J]. Journal of Pineal Research, 2012, 53(4):385-389.doi: 10.1111/j.1600-079X.2012.01008.x.
|
| [24] |
Murch S J, Campbell S S B, Saxena P K. The role of serotonin and melatonin in plant morphogenesis:regulation of auxin-induced root organogenesis in in vitro-cultured explants of St.John's Wort ( Hypericum perforatum L.)[J]. In Vitro Cellular & Developmental Biology-Plant, 2001, 37(6):786-793.doi: 10.1007/s11627-001-0130-y.
|
| [25] |
Zhao Y, Qi L W, Wang W M, Saxena P K, Liu C Z. Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata[J]. Journal of Pineal Research, 2011, 50(1):83-88.doi: 10.1111/j.1600-079X.2010.00817.x.
|
| [26] |
Szafrańska K, Glińska S, Janas K M. Ameliorative effect of melatonin on meristematic cells of chilled and re-warmed Vigna radiata roots[J]. Biologia Plantarum, 2013, 57(1):91-96.doi: 10.1007/s10535-012-0253-5.
URL
|
| [27] |
郭远航, 王洪博, 白宝伟, 张磊, 赵丰年, 吕东雪, 贾婷, 王兴鹏. 外源褪黑素对大豆幼苗盐胁迫的缓解效应[J]. 华北农学报, 2024, 39(2):116-125.doi: 10.7668/hbnxb.20194665.
|
|
Guo Y H, Wang H B, Bai B W, Zhang L, Zhao F N, Lyu D X, Jia T, Wang X P. Effects of exogenous melatonin on salt stress reduction in soybean seedlings[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(2):116-125.
doi: 10.7668/hbnxb.20194665
|
| [28] |
|
|
Wang B, Song S J, Li D X, Dong W X, Zhang Y C. The mechanism of melatonin regulating Na+/K+ balance by mediating H2O2 in adzuki bean under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(6):62-71.
|
| [29] |
王硕, 赵港伊, 史天乐, 吴思凡, 闫倩颖, 韩胜芳, 王冬梅. 外源注射褪黑素对小麦抵抗叶锈菌侵染的影响[J]. 华北农学报, 2022, 37(5):181-186.doi: 10.7668/hbnxb.20192998.
|
|
Wang S, Zhao G Y, Shi T L, Wu S F, Yan Q Y, Han S F, Wang D M. Effect of exogenous melatonin injection on resistance of wheat to leaf rust[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(5):181-186.
doi: 10.7668/hbnxb.20192998
|
| [30] |
Dhillon G S, Gretzinger M, Baarda L, Lange R, Singh Gill K, Yaremko V, Harding M W, Coles K. Effects of simulated hail damage and foliar-applied recovery treatments on growth and grain yield of wheat,field pea,and dry bean crops[J]. Canadian Journal of Plant Science, 2021, 101(5):758-769.doi: 10.1139/cjps-2020-0231.
|
| [31] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
| [32] |
曲宏宇, 张力爽, 汤雅惠, 刘磊, 郭睿, 郭卫冷, 郭长虹. 紫花苜蓿β-淀粉酶基因家族成员鉴定及其在盐碱胁迫下的表达分析[J]. 生物工程学报, 2025, 41(2):719-735.doi: 10.13345/j.cjb.240801.
|
|
Qu H Y, Zhang L S, Tang Y H, Liu L, Guo R, Guo W L, Guo C H. Identification and expression analysis of β-amylase gene family members in alfalfa under saline-alkali stress[J]. Chinese Journal of Biotechnology, 2025, 41(2):719-735.
|
| [33] |
|
|
Yang P. Characterization of codon usage of β-amylase genes in Arabidopsis thaliana[J]. Journal of Nanjing Xiaozhuang University, 2011, 27(3):72-75.
|
| [34] |
|
|
Liao D Q, Zhang H L, Li Z C, John B. Characterization of codon usage of rice β-amylase genes[J]. Journal of China Agricultural University, 2009, 14(5):1-11.
|
| [35] |
|
|
Cui B K, Xing B G, Wei Y Y, Peng R H, Hu S L. Genome-wide identification and expression analysis of the TUA gene family in cotton[J]. Journal of Anyang Institute of Technology, 2025, 24(2):113-118,124.
|
| [36] |
|
|
Jiang S Z, Lian H, Xiong Y F, Luo K J, Su X Q, Chen S P. Genome-wide identification and expression analysis of the β-amylase gene family in Castanea henryi[J]. Journal of Forest and Environment, 2021, 41(5):545-553.
|
| [37] |
|
|
Liang G P. Study on the mechanism of cold resistance via β-amylase regulating sugar metabolism in grapes[D]. Lanzhou: Gansu Agricultural University, 2022.
|
| [38] |
Thalmann M, Santelia D. Starch as a determinant of plant fitness under abiotic stress[J]. New Phytologist, 2017, 214(3):943-951.doi: 10.1111/nph.14491.
pmid: 28277621
|
| [39] |
Sun S H, Fang J B, Lin M M, Qi X J, Chen J Y, Wang R, Li Z, Li Y K, Muhammad A. Freezing tolerance and expression of β-amylase gene in two Actinidia arguta cultivars with seasonal changes[J]. Plants, 2020, 9(4):515.doi: 10.3390/plants9040515.
URL
|
| [40] |
|
|
Li X G, Chen Z L, Wang Z P, Dai Q, Yu Q H, Li N. Genome-wide identification of tomato(Solanum lycopersicum) β-BAM gene family and its expression analysis under salt stress and exogenous plant growth regulators[J].Journal of Agricultural Biotechnology, 2024, 32(5):1008-1019.
|
| [41] |
Zamora O, Schulze S, Azoulay-Shemer T, Parik H, Unt J, Brosché M, Schroeder J I, Yarmolinsky D, Kollist H. Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO 2,abscisic acid,darkness,vapor pressure deficit and ozone[J]. The Plant Journal, 2021, 108(1):134-150.doi: 10.1111/tpj.15430.
pmid: 34289193
|
| [42] |
Miao H X, Sun P G, Miao Y L, Liu J H, Zhang J B, Jia C H, Wang J Y, Wang Z, Jin Z Q, Xu B Y. Genome-wide identification and expression analysis of the β-amylase genes strongly associated with fruit development,ripening,and abiotic stress response in two banana cultivars[J]. Frontiers of Agricultural Science and Engineering, 2016, 3(4):346.doi: 10.15302/j-fase-2016127.
URL
|
| [43] |
|
|
Hao X Y, Yue C, Tang H, Qian W J, Wang Y C, Wang L, Wang X C, Yang Y J. Cloning of β-amylase gene(CsBAM3)and its expression model response to cold stress in tea plant[J]. Acta Agronomica Sinica, 2017, 43(10):1417-1425.
doi: 10.3724/SP.J.1006.2017.01417
URL
|
| [44] |
Sun F A, Palayam M, Shabek N. Structure of maize BZR1-type β-amylase BAM8 provides new insights into its noncatalytic adaptation[J]. Journal of Structural Biology, 2022, 214(3):107885.doi: 10.1016/j.jsb.2022.107885.
|