[1] |
Ma Z W, Wang W M, Zhang D Y, Zhang Y K, Zhao Y, Li X L, Zhao L M, Lin C C, Wang J H, Zhou B B, Cheng J B, Xu D, Li W X, Yang X B, Huang Y L, Cui P P, Liu J, Zeng X W, Zhai R, Zhang X X. Ovine RAP1GAP and rBAT gene polymorphisms and their association with tail fat deposition in Hu sheep[J]. Frontiers in Veterinary Science, 2022, 9:974513.doi: 10.3389/fvets.2022.974513.
|
[2] |
白飞英, 李建明, 王媛, 闫振富. 湖羊及其利用[J]. 北方牧业, 2021(4):12-13.
|
|
Bai F Y, Li J M, Wang Y, Yan Z F. Hu sheep and its utilization[J]. Northern Pastoralism, 2021(4):12-13.
|
[3] |
|
|
Yang X, Qin S, Wang H, Qian Z S, Dai Z Z, Peng Y X, Ma X Q, Cai Y. Comparison of adipose tissue characteristics in different parts of Tibetan sheep and Small-Tailed Han sheep[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(2):32-35.
|
[4] |
|
|
Yan X, Sun A L. Research progress on the role and mechanism of perirenal adipose tissue in diabetic nephropathy[J]. Geriatrics Research, 2022, 3(6):38-42.
|
[5] |
Zhang D Y, Zhang X X, Li F D, La Y F, Li G Z, Zhang Y K, Li X L, Zhao Y, Song Q Z, Wang W M. The association of polymorphisms in the ovine PPARGC1B and ZEB2 genes with body weight in Hu sheep[J]. Animal Biotechnology, 2022, 33(1):90-97.doi: 10.1080/10495398.2020.1775626.
|
[6] |
Hartzell H C, Yu K, Xiao Q H, Chien L T, Qu Z Q. Anoctamin/TMEM16 family members are Ca 2+-activated Cl - channels[J]. The Journal of Physiology, 2009, 587(Pt 10):2127-2139.doi: 10.1113/jphysiol.2008.163709.
pmid: 19015192
|
[7] |
Griffin D A, Johnson R W, Whitlock J M, Pozsgai E R, Heller K N, Grose W E, Arnold W D, Sahenk Z, Hartzell H C, Rodino-Klapac L R. Defective membrane fusion and repair in anoctamin5-deficient muscular dystrophy[J]. Human Molecular Genetics, 2016, 25(10):1900-1911.doi: 10.1093/hmg/ddw063.
pmid: 26911675
|
[8] |
Benarroch E E. Anoctamins(TMEM16 proteins):functions and involvement in neurologic disease[J]. Neurology, 2017, 89(7):722-729.doi: 10.1212/WNL.0000000000004246.
pmid: 28724583
|
[9] |
Chandra G, Defour A, Mamchoui K, Pandey K, Mishra S, Mouly V, Sreetama S, Mahad Ahmad M, Mahjneh I, Morizono H, Pattabiraman N, Menon A K, Jaiswal J K. Dysregulated calcium homeostasis prevents plasma membrane repair in anoctamin 5/TMEM16E-deficient patient muscle cells[J]. Cell Death Discovery, 2019, 5:118.doi: 10.1038/s41420-019-0197-z.
pmid: 31341644
|
[10] |
Pedemonte N, Galietta L J V. Structure and function of TMEM16 proteins(anoctamins)[J]. Physiological Reviews, 2014, 94(2):419-459.doi: 10.1152/physrev.00039.2011.
|
[11] |
Tsutsumi S, Kamata N, Vokes T J, Maruoka Y, Nakakuki K, Enomoto S, Omura K, Amagasa T, Nagayama M, Saito-Ohara F, Inazawa J, Moritani M, Yamaoka T, Inoue H, Itakura M. The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia(GDD)[J]. The American Journal of Human Genetics, 2004, 74(6):1255-1261.doi: 10.1086/421527.
|
[12] |
de Bruyn A, Montagnese F, Holm-Yildiz S, Scharff Poulsen N, Stojkovic T, Behin A, Palmio J, Jokela M, De Bleecker J L, de Visser M, van der Kooi A J, Ten Dam L, Domínguez González C, Maggi L, Gallone A, Kostera-Pruszczyk A, Macias A, Łusakowska A, Nedkova V, Olive M, Álvarez-Velasco R, Wanschitz J, Paradas C, Mavillard F, Querin G, Fernández-Eulate G, Quinlivan R, Walter M C, Depuydt C E, Udd B, Vissing J, Schoser B, Claeys K G. Anoctamin-5 related muscle disease:clinical and genetic findings in a large European cohort[J]. Brain, 2023, 146(9):3800-3815.doi: 10.1093/brain/awad088.
|
[13] |
Sui T T, Xu L, Lau Y S, Liu D, Liu T J, Gao Y D, Lai L X, Han R Z, Li Z J. Development of muscular dystrophy in a CRISPR-engineered mutant rabbit model with frame-disrupting ANO5 mutations[J]. Cell Death & Disease, 2018, 9(6):609.doi: 10.1038/s41419-018-0674-y.
|
[14] |
Wosczyna M N, Perez Carbajal E E, Wagner M W, Paredes S, Konishi C T, Liu L, Wang T T, Walsh R A, Gan Q, Morrissey C S, Rando T A. Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells[J]. Cell Stem Cell, 2021, 28(7):1323-1334.e8.doi: 10.1016/j.stem.2021.04.008.
pmid: 33945794
|
[15] |
Wosczyna M N, Konishi C T, Perez Carbajal E E, Wang T T, Walsh R A, Gan Q, Wagner M W, Rando T A. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle[J]. Cell Reports, 2019, 27(7):2029-2035.e5.doi: 10.1016/j.celrep.2019.04.074.
pmid: 31091443
|
[16] |
He C L, Holme J, Anthony J. SNP genotyping:the KASP assay[J]. Methods in Molecular Biology, 2014, 1145:75-86.doi: 10.1007/978-1-4939-0446-4_7.
|
[17] |
孙国权, 高树新, 吴慧光, 李俊雅, 丽春, 王景山, 王玉泉, 王国富. 解偶联蛋白1、2和3基因在中国西门塔尔牛组织器官中的表达水平及其与胴体品质关系分析[J]. 华北农学报, 2014, 29(4):116-120.doi: 10.7668/hbnxb.2014.04.019.
|
|
Sun G Q, Gao S X, Wu H G, Li J Y, Li C, Wang J S, Wang Y Q, Wang G F. Analyze the ucp1,ucp2,ucp3 genes expression level in tissues/organs and the relationship with the carcass traits in Chinese simmental cattle[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(4):116-120.
|
[18] |
Zhao H Y, Wu X F, Cai H F, Pan C Y, Lei C Z, Chen H, Lan X Y. Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2( PITX2)gene in dairy goats[J]. Gene, 2013, 532(2):203-210.doi: 10.1016/j.gene.2013.09.062.
|
[19] |
|
|
Zhang Y, Wu L F, Wei B, Li M B, Wu F A, You P G, Shang A G, Wang W. Key points of feeding and breeding management of Hu sheep[J]. The Chinese Livestock and Poultry Breeding, 2020, 16(11):98-99.
|
[20] |
Cui P P, Wang W M, Zhang D Y, Li C, Huang Y L, Ma Z W, Wang X J, Zhao L M, Zhang Y K, Yang X B, Xu D, Cheng J B, Li X L, Zeng X W, Zhao Y, Li W X, Wang J H, Lin C C, Zhou B B, Liu J, Zhai R, Zhang X X. Identification of TRAPPC9 and BAIAP2 gene polymorphisms and their association with fat deposition-related traits in Hu sheep[J]. Frontiers in Veterinary Science, 2022, 9:928375.doi: 10.3389/fvets.2022.928375.
|
[21] |
Zhang R F, Li X F. Association between IGF-IR,m-calpain and UCP-3 gene polymorphisms and growth traits in Nanyang cattle[J]. Molecular Biology Reports, 2011, 38(3):2179-2184.doi: 10.1007/s11033-010-0346-1.
|
[22] |
Juszczuk-Kubiak E, Bujko K, Grzes' M, Cymer M, Wicińska K, Szostak A, Pierzchała M. Study of bovine Mef2B gene:the temporal-spatial expression patterns,polymorphism and association analysis with meat production traits[J]. Journal of Animal Science, 2016, 94(11):4536-4548.doi: 10.2527/jas.2016-0741.
pmid: 27898947
|
[23] |
Sherman E L, Nkrumah J D, Murdoch B M, Li C, Wang Z, Fu A, Moore S S. Polymorphisms and haplotypes in the bovine neuropeptide Y,growth hormone receptor,ghrelin,insulin-like growth factor 2,and uncoupling proteins 2 and 3 genes and their associations with measures of growth,performance,feed efficiency,and carcass merit in beef cattle[J]. Journal of Animal Science, 2008, 86(1):1-16.doi: 10.2527/jas.2006-799.
pmid: 17785604
|
[24] |
Cheng J B, Zhang X X, Li F D, Yuan L F, Zhang D Y, Zhang Y K, Song Q Z, Li X L, Zhao Y, Xu D, Zhao L M, Li W X, Wang J H, Zhou B B, Lin C C, Yang X B, Wang W M. Detecting single nucleotide polymorphisms in MEF2B and UCP3 and elucidating their association with sheep growth traits[J]. DNA and Cell Biology, 2021, 40(12):1554-1562.doi: 10.1089/dna.2021.0782.
|
[25] |
Walsh I M, Bowman M A, Soto Santarriaga I F, Rodriguez A, Clark P L. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7):3528-3534.doi: 10.1073/pnas.1907126117.
pmid: 32015130
|
[26] |
Wang W, Huang R, Tang P T, Tu M, Guo X L. Perirenalfat thickness is associated with bone turnover markers and bone mineral density in postmenopausal women with type 2 diabetes mellitus[J]. Frontiers in Endocrinology, 2022, 13:990667.doi: 10.3389/fendo.2022.990667.
|
[27] |
Fang L L, Guo F J, Zhou L H, Stahl R, Grams J. The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans[J]. Adipocyte, 2015, 4(4):273-279.doi: 10.1080/21623945.2015.1034920.
pmid: 26451283
|
[28] |
Foster M C, Hwang S J, Porter S A, Massaro J M, Hoffmann U, Fox C S. Fatty kidney,hypertension,and chronic kidney disease:the framingham heart study[J]. Hypertension, 2011, 58(5):784-790.doi: 10.1161/HYPERTENSIONAHA.111.175315.
|
[29] |
Bredella M A, Torriani M, Ghomi R H, Thomas B J, Brick D J, Gerweck A V, Harrington L M, Breggia A, Rosen C J, Miller K K. Determinants of bone mineral density in obese premenopausal women[J]. Bone, 2011, 48(4):748-754.doi: 10.1016/j.bone.2010.12.011.
pmid: 21195217
|
[30] |
Choi H S, Kim K J, Kim K M, Hur N W, Rhee Y, Han D S, Lee E J, Lim S K. Relationship between visceral adiposity and bone mineral density in Korean adults[J]. Calcified Tissue International, 2010, 87(3):218-225.doi: 10.1007/s00223-010-9398-4.
pmid: 20631995
|
[31] |
Kim J H, Han E H, Jin Z W, Lee H K, Fujimiya M, Murakami G, Cho B H. Fetal topographical anatomy of the upper abdominal lymphatics:its specific features in comparison with other abdominopelvic regions[J]. The Anatomical Record, 2012, 295(1):91-104.doi: 10.1002/ar.21527.
|
[32] |
Wang Q A, Tao C, Jiang L, Shao M L, Ye R S, Zhu Y, Gordillo R, Ali A, Lian Y, Holland W L, Gupta R K, Scherer P E. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation[J]. Nature Cell Biology, 2015, 17(9):1099-1111.doi: 10.1038/ncb3217.
pmid: 26280538
|
[33] |
Hausman G J. Anatomical and enzyme histochemical differentiation of adipose tissue[J]. International Journal of Obesity, 1985, 9(S1):1-6.
|
[34] |
|
|
Zhou Y, Li M, Zuo Y. Research progress of perirenal adipose tissue and cardiovascular diseases[J]. Journal of Modern Medicine & Health, 2023, 39(4):668-672.
|
[35] |
Penttilä S, Palmio J, Suominen T, Raheem O, Evilä A, Muelas Gomez N, Tasca G, Waddell L B, Clarke N F, Barboi A, Hackman P, Udd B. Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5[J]. Neurology, 2012, 78(12):897-903.doi: 10.1212/WNL.0b013e31824c4682.
pmid: 22402862
|
[36] |
Schroeder B C, Cheng T, Jan Y N, Jan L Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 2008, 134(6):1019-1029.doi: 10.1016/j.cell.2008.09.003.
pmid: 18805094
|
[37] |
Almaça J, Tian Y M, Aldehni F, Ousingsawat J, Kongsuphol P, Rock J R, Harfe B D, Schreiber R, Kunzelmann K. TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A[J]. Journal of Biological Chemistry, 2009, 284(42):28571-28578.doi: 10.1074/jbc.M109.010074.
pmid: 19654323
|
[38] |
Mizuta K, Tsutsumi S, Inoue H, Sakamoto Y, Miyatake K, Miyawaki K, Noji S, Kamata N, Itakura M. Molecular characterization of GDD1/TMEM16E,the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia[J]. Biochemical and Biophysical Research Communications, 2007, 357(1):126-132.doi: 10.1016/j.bbrc.2007.03.108.
|