[1] |
doi: 10.11963/1000-632X.lyljl.20180828
|
|
Liu Y, Qian Y Y, Cui S F, Jin W P, Wang G G, Zhang X, Zhang H N, Li J L. Research progress on seed utilization of glandless cotton[J]. China Cotton, 2018, 45(8): 4-8.
|
[2] |
doi: 10.16863/j.cnki.1003-6377.2020.03.001
|
|
Hu B, Zheng W X, Gao W M, Yang H Y. Research progress of toxicology and detoxification technology of free gossypol[J]. Grass-Feeding Livestock, 2020(3): 1-7,38.
|
[3] |
王全喜, 张小平. 植物学[M]. 2版. 北京: 科学出版社, 2012.
|
|
Wang Q X, Zhang X P. Botany[M]. 2 Edition.Beijing: China Science Publishing & Media Ltd, 2012.
|
[4] |
doi: 10.16366/j.cnki.1000-2367.2011.04.022
|
|
Liu Z C, Jiao Z J, Bai X L. Naphthoquinone with phenolic hydroxyl groups in pigment glands of Gossypium hirsutum L.localised by histochemical staining[J]. Journal of Henan Normal University (Natural Science Edition), 2011, 39(4): 116-118.
|
[5] |
doi: 10.11963/1002-7807.lhzsj.20170818
|
|
Liu H, Ji L Y, Zhao T L, Chen J H, Zhu S J. Analysis of the correlation between pigment glands and(-)/(+)-gossypol contents in upland cotton[J]. Cotton Science, 2017, 29(5): 437-446.
|
[6] |
Ma D, Hu Y, Yang C Q, Liu B L, Fang L, Wan Q, Liang W H, Mei G F, Wang L J, Wang H P, Ding L Y, Dong C G, Pan M Q, Chen J D, Wang S, Chen S Q, Cai C P, Zhu X F, Guan X Y, Zhou B L, Zhu S J, Wang J W, Guo W Z, Chen X Y, Zhang T Z. Genetic basis for glandular trichome formation in cotton[J]. Nature Communications, 2016, 7: 10456.doi: 10.1038/ncomms10456.
doi: 10.1038/ncomms10456
pmid: 26795254
|
[7] |
Janga M R, Pandeya D, Campbell L M, Konganti K, Villafuerte S T, Puckhaber L, Pepper A, Stipanovic R D, Scheffler J A, Rathore K S. Genes regulating gland development in the cotton plant[J]. Plant Biotechnology Journal, 2019, 17(6): 1142-1153.doi: 10.1111/pbi.13044.
doi: 10.1111/pbi.13044
pmid: 30467959
|
[8] |
Gao W, Xu F C, Long L, Li Y, Zhang J L, Chong L, Botella J R, Song C P. The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton[J]. Plant Biotechnology Journal, 2020, 18(7): 1573-1584.doi: 10.1111/pbi.13323.
doi: 10.1111/pbi.13323
pmid: 31883409
|
[9] |
Cai Y F, Cai X Y, Wang Q L, Wang P, Zhang Y, Cai C W, Xu Y C, Wang K B, Zhou Z L, Wang C X, Geng S P, Li B, Dong Q, Hou Y Q, Wang H, Ai P, Liu Z, Yi F F, Sun M S, An G Y, Cheng J R, Zhang Y Y, Shi Q, Xie Y H, Shi X Y, Chang Y, Huang F F, Chen Y, Hong S M, Mi L Y, Sun Q, Zhang L, Zhou B L, Peng R H, Zhang X, Liu F. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis[J]. Plant Biotechnology Journal, 2020, 18(3): 814-828.doi: 10.1111/pbi.13249.
doi: 10.1111/pbi.13249
URL
|
[10] |
Wu C F, Cheng H L, Li S Y, Zuo D Y, Lin Z X, Zhang Y P, Lü L M, Wang Q L, Song G L. Molecular cloning and characterization of GhERF105,a gene contributing to the regulation of gland formation in upland cotton( Gossypium hirsutum L.)[J]. BMC Plant Biology, 2021, 21(1): 102.doi: 10.1186/s12870-021-02846-5.
doi: 10.1186/s12870-021-02846-5
URL
|
[11] |
陈莹, 张法铭, 姜辉, 柴启超, 王秀丽, 高明伟, 王家宝, 张超, 王永翠, 郑锦秀, 赵军胜. 我国棉花形态标记性状应用研究进展[J]. 江苏农业科学, 2019, 47(18): 46-50.doi: 10.15889/j.issn.1002-1302.2019.18.008.
doi: 10.15889/j.issn.1002-1302.2019.18.008
|
|
Chen Y, Zhang F M, Jiang H, Chai Q C, Wang X L, Gao M W, Wang J B, Zhang C, Wang Y C, Zheng J X, Zhao J S. Research progress on application of morphological marker traits in Chinese cotton[J]. Jiangsu Agricultural Sciences, 2019, 47(18): 46-50.
|
[12] |
董承光, 王娟, 肖光顺, 李保成. 棉花腺体性状基因的遗传与克隆研究进展[J]. 中国农学通报, 2010, 26(7): 44-47.
|
|
Dong C G, Wang J, Xiao G S, Li B C. Advances on gland gene heredity and clone in cotton(Gossypium)[J]. Chinese Agricultural Science Bulletin, 2010, 26(7): 44-47.
|
[13] |
Zang Y H, Xu C Y, Xuan L S, Ding L Y, Zhu J K, Si Z F, Zhang T Z, Hu Y. Identification and characteristics of a novel gland-forming gene in cotton[J]. The Plant Journal: for Cell and Molecular Biology, 2021, 108(3): 781-792.doi: 10.1111/tpj.15477.
doi: 10.1111/tpj.15477
URL
|
[14] |
Zhang J F, Wedegaertner T. Genetics and breeding for glandless upland cotton with improved yield potential and disease resistance: A review[J]. Frontiers in Plant Science, 2021, 12: 753426.doi: 10.3389/fpls.2021.753426.
doi: 10.3389/fpls.2021.753426
URL
|
[15] |
Cheng H L, Lu C R, Yu J Z, Zou C S, Zhang Y P, Wang Q L, Huang J, Feng X X, Jiang P F, Yang W C, Song G L,. Fine mapping and candidate gene analysis of the dominant glandless gene G2e in cotton( Gossypium spp.)[J]. Theoretical and Applied Genetics,2016,129(7): 1347-1355.doi: 10.1007/s00122-016-2707-1.
doi: 10.1007/s00122-016-2707-1
|
[16] |
doi: 10.11963/1002-7807.hjhzsj.20181226
|
|
Hu J H, Zhao T L, Li C, Yu J W, Chen J H, Zhu S J. Morphogenesis of pigment glands and metabolic characteristics of gossypol in Gossypium bickii[J]. Cotton Science, 2019, 31(1): 54-63.
|
[17] |
Sun Q, Cai Y F, Zhu X Y, He X H, Jiang H Z, He G H. Molecular cloning and expression analysis of a new WD40 repeat protein gene in upland cotton[J]. Biologia, 2012, 67(6): 1112-1118.doi: 10.2478/s11756-012-0103-0.
doi: 10.2478/s11756-012-0103-0
URL
|
[18] |
doi: 10.3969/j.issn.1000-4440.2012.01.004
|
|
Yue X K, Cai Y F, Liu Y, Wang W N, Yang L, Zhou C P. Molecular cloning and prokaryotic expression of a zinc-binding protein(ZnBP)in cotton[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(1): 18-23.
|
[19] |
张曦, 钱玉源, 刘祎, 王广恩, 宋世佳, 李晓飞, 米换房, 崔淑芳, 李俊兰. 棉花色素腺体发育相关基因 GhNAC201的克隆与表达分析[J]. 华北农学报, 2020, 35(1): 29-35.doi: 10.7668/hbnxb.20190587.
doi: 10.7668/hbnxb.20190587
|
|
Zhang X, Qian Y Y, Liu Y, Wang G G, Song S J, Li X F, Mi H F, Cui S F, Li J L. Cloning and expression analysis of a cotton pigment gland formation related gene GhNAC201[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(1): 29-35.
|
[20] |
Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant[J]. Critical Reviews in Biotechnology, 2020, 40(6): 750-776.doi: 10.1080/07388551.2020.1768509.
doi: 10.1080/07388551.2020.1768509
pmid: 32522044
|
[21] |
Tao T, Zhao L, Lü Y D, Chen J D, Hu Y, Zhang T Z, Zhou B L. Transcriptome sequencing and differential gene expression analysis of delayed gland morphogenesis in Gossypium australe during seed germination[J]. PLoS One, 2013, 8(9): e75323.doi: 10.1371/journal.pone.0075323.
doi: 10.1371/journal.pone.0075323
URL
|
[22] |
Sun Q, Cai Y F, Li S W, Chen M, Mo J C, He X H, Jiang H Z, Liu J G, Lei K R. Identification of the genes and pathways associated with pigment gland morphogenesis in cotton by transcriptome profiling of near-isogenic lines[J]. Biologia, 2013, 68(2): 249-257.doi: 10.2478/s11756-013-0145-y.
doi: 10.2478/s11756-013-0145-y
URL
|
[23] |
姜鹏飞, 陆才瑞, 邹长松, 程海亮, 杨文翠, 冯晓旭, 张友平, 王巧连, 宋国立. 棉花无腺体近等基因系差异表达基因分析[J]. 棉花学报, 2015, 27(6): 506-514.doi: 10.11963/issn.1002-7807.201506002.
doi: 10.11963/issn.1002-7807.201506002
|
|
Jiang P F, Lu C R, Zou C S, Cheng H L, Yang W C, Feng X X, Zhang Y P, Wang Q L, Song G L. Analysis of differentially expressed genes from glandless near-isogenic lines of cotton[J]. Cotton Science, 2015, 27(6): 506-514.
|
[24] |
Scheffler J A, Taliercio E W, Tonos J L, Romano G B. Microscopic methods to evaluate gland initiation and development in cotton ovules[J]. Journal of Cotton Science, 2014, 18(3):420-429.
|
[25] |
Illgen S, Zintl S, Zuther E, Hincha D K, Schmülling T. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress[J]. Plant Molecular Biology, 2020, 103(3): 303-320.doi: 10.1007/s11103-020-00993-1.
doi: 10.1007/s11103-020-00993-1
URL
|
[26] |
Vogel M O, Moore M, König K, Pecher P, Alsharafa K, Lee J, Dietz K J. Fast retrograde signaling in response to high light involves metabolite export,mitogen-activated protein kinase6,and AP2/ERF transcription factors in Arabidopsis[J]. The Plant Cell, 2014, 26(3): 1151-1165.doi: 10.1105/tpc.113.121061.
doi: 10.1105/tpc.113.121061
URL
|
[27] |
Cao F Y, Khan M, Taniguchi M, Mirmiran A, Moeder W, Lumba S, Yoshioka K, Desveaux D. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses[J]. The Plant Journal: for Cell and Molecular Biology, 2019, 100(1): 187-198.doi: 10.1111/tpj.14425.
doi: 10.1111/tpj.14425
pmid: 31148337
|
[28] |
Mase K, Ishihama N, Mori H, Takahashi H, Kaminaka H, Kodama M, Yoshioka H. Ethylene-responsive AP2/ERF transcription factor MACD1 participates in phytotoxin-triggered programmed cell death[J]. Molecular Plant-Microbe Interactions, 2013, 26(8): 868-879.doi: 10.1094/MPMI-10-12-0253-R.
doi: 10.1094/MPMI-10-12-0253-R
pmid: 23617414
|
[29] |
Fröschel C, Iven T, Walper E, Bachmann V, Weiste C, Dröge-Laser W. A gain-of-function screen reveals redundant ERF transcription factors providing opportunities for resistance breeding toward the vascular fungal pathogen Verticillium longisporum[J]. Molecular Plant-Microbe Interactions, 2019, 32(9): 1095-1109.doi: 10.1094/MPMI-02-19-0055-R.
doi: 10.1094/MPMI-02-19-0055-R
URL
|
[30] |
Zang Z Y, Lü Y, Liu S, Yang W, Ci J B, Ren X J, Wang Z, Wu H, Ma W Y, Jiang L Y, Yang W G. A novel ERF transcription factor,ZmERF105,positively regulates maize resistance to Exserohilum turcicum[J]. Frontiers in Plant Science, 2020, 11: 850.doi: 10.3389/fpls.2020.00850.
doi: 10.3389/fpls.2020.00850
URL
|
[31] |
Agrawal A A, Karban R. Specificity of constitutive and induced resistance: Pigment glands influence mites and caterpillars on cotton plants[J]. Entomologia Experimentalis et Applicata, 2000, 96(1): 39-49.doi: 10.1046/j.1570-7458.2000.00677.x.
doi: 10.1046/j.1570-7458.2000.00677.x
URL
|
[32] |
Liu W Z, Zhou Y F, Wang X, Jiao Z J. Programmed cell death during pigment gland formation in Gossypium hirsutum leaves[J]. Plant Biology, 2010, 12(6): 895-902.doi: 10.1111/j.1438-8677.2009.00291.x.
doi: 10.1111/j.1438-8677.2009.00291.x
pmid: 21040304
|