[1] 张玉胜.中国马铃薯产品国际竞争力及出口潜力研究[D].北京:中国农业科学院,2020.doi:10.27630/d.cnki.gznky.2020.000468. Zhang Y S. International competitiveness and export potential of potato products in China[D].Bejing:Chinese Academy of Agricultural Sciences,2020. [2] 陈虞超,聂峰杰,张丽,巩檑,甘晓燕,石磊,宋玉霞.马铃薯X病毒研究进展[J]. 长江蔬菜,2016(18):39-44.doi:10.3865/j.issn.1001-3547.2016.18.015. Chen Y C,Nie F J,Zhang L,Gong L,Gan X Y,Shi L,Song Y X. Research progress of Potato virus X[J]. Journal of Changjiang Vegetables,2016(18):39-44. [3] 张华鹏,张剑峰,刘俊莹,王聪聪. 马铃薯上PVY、PVS和PLRV的三重RT-PCR检测[J]. 华北农学报,2011,26(5):40-45.doi:10.7668/hbnxb.2011.05.009. Zhang H P,Zhang J F,Liu J Y,Wang C C. Triplex-RT-PCR detection of PVY,PVS and PLRV in potato[J]. Acta Agriculturae Boreali-Sinica,2011,26(5):40-45. [4] 贺振,陈春峰,张志想,李世访.马铃薯Y病毒科分子进化研究进展[J].植物保护,2017,43(3):13-22.doi:10.3969/j.issn.0529-1542.2017.03.003. He Z,Chen C F,Zhang Z X,Li S F.Advances in molecular evolution of viruses in the family Potyviridae[J]. Plant Protection,2017,43(3):13-22. [5] Flores R,Hernández C,de Alba A E M,Daròs J A,Serio F D. Viroids and viroid-host interactions[J]. Annual Review of Phytopathology,2005,43(1):117-139.doi:10.1146/annurev.phyto.43.040204.140243. [6] 范国权,白艳菊,高艳玲,张威,张抒,申宇,刘凯,喻江.中国马铃薯主要病毒病发生情况调查与分析[J].东北农业大学学报,2013,44(7):74-79.doi:10.3969/j.issn. 1005-9369.2013.07.014. Fan G Q,Bai Y J,Gao Y L,Zhang W,Zhang S,Shen Y Liu K,Yu J.Investigation and analysis on potato viral disease in China[J]. Journal of Northeast Agricultural University,2013,44(7):74-79. [7] 邱彩玲,吕典秋,董学志,魏琪,刘尚武,王绍鹏,宿飞飞,李勇,白艳菊. 我国在防治马铃薯类病毒病中存在的问题及防治对策[J].东北农业大学学报,2011,42(10):140-144.doi:10.3969/j.issn.1005-9369.2011.10.029. Qiu C L,Lü D Q,Dong X Z,Wei Q,Liu S W,Wang S P,Su F F,Li Y,Bai Y J. Problems and countermeasures on potato spindle tuber viroid (PSTVd) control in China[J]. Journal of Northeast Agricultural University,2011,42(10):140-144. [8] Zhao J P,Rios C G,Song J Q. Potato virus X -based microRNA silencing (VbMS) in potato[J]. Journal of Visualized Experiments,2020(159):e61067.doi:10.3791/61067. [9] 许宗宏,郝青南,陈李淼,孙佃臣,田星星,单志慧.基于大豆花叶病毒衣壳蛋白基因的RNA干扰植物表达载体的构建[J].华北农学报,2010,25(S2):1-4.doi:10.7668/hbnxb.2010.S2.001. Xu Z H,Hao Q N,Chen L M,Sun D C,Tian X X,Shan Z Z. Plant expression construct based on RNAi for Soybean mosaic virus[J]. Acta Agriculturae Boreali-Sinica,2010,25(S2):1-4. [10] Zhao L Q,Li H L,Li R,Li W,Hua J P,Guo Y D. Cloning of cotton delta-12 oleate desaturase gene FAD2-1 and construction of its ihpRNA and amiRNA interference vectors[J]. Agricultural Science & Technology,2012,13(11):2281-2283,2286.doi:10.16175/j.cnki.1009-4229.2012.11.028. [11] 周香艳,杨江伟,唐勋,文义凯,张宁,司怀军. amiRNA技术沉默C-3氧化酶编码基因StCPD 对马铃薯抗旱性的影响[J].作物学报,2018,44(4):512-521.doi:10.3724/SP.J.1006.2018.00512. Zhou X Y,Yang J W,Tang X,Wen Y K,Zhang N,Si H J. Effect of silencing C-3 oxidase encoded gene StCPD on potato drought resistance by amiRNA technology[J]. Acta Agronomica Sinica,2018,44(4):512-521. [12] Carbonell A,Daròs J A. Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection[J]. Molecular Plant Pathology,2017,18(5):746-753.doi:10.1111/mpp.12529. [13] Sharma N,Prasad M. Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato[J]. Plant Cell Reports,2020,39(11):1565-1579.doi:10.1007/s00299-020-02584-2. [14] Meyers B C,Axtell M J. MicroRNAs in plants:key findings from the early years[J]. The Plant Cell,2019,31(6):1206-1207.doi:10.1105/tpc.19.00310. [15] Zubair M,Khan M Z,Rauf I,Raza A,Shah A H,Hassan I,Amin I,Mansoor S. Artificial micro-RNA (amiRNA)-mediated resistance against whitefly (Bemisia tabaci) targeting three genes[J]. Crop Protection,2020,137:105308.doi:10.1016/j.cropro.2020.105308. [16] 范国权,高艳玲,张威,张抒,申宇,邱彩玲,白艳菊,刘凯,喻江.马铃薯主要病毒侵染不同品种症状及对产量的影响[J]. 中国马铃薯,2019,33(1):34-42.doi:10.3969/j.issn.1672-3635.2019.01.006. Fan G Q,Gao Y L,Zhang W,Zhang S,Shen Y,Qiu C L,Bai Y J,Liu K,Yu J. Symptoms and yields of different Potato varieties infected with main potato viruses[J]. Chinese Potato Journal,2019,33(1):34-42. [17] 邱彩玲,吕文河,吕典秋,白艳菊,魏琪,刘尚武,董学志,耿宏伟,万书明,魏峭嵘.4个马铃薯品种感染马铃薯纺锤块茎类病毒(PSTVd)的症状[J].植物保护,2014,40(6):159-163.doi:10.3969/j.issn.0529-1542.2014.06.030. Qiu C L,Lü W H,Lü D Q,Bai Y J,Wei Q,Liu S W,Dong X Z,Geng H W,Wan S M,Wei Q R. Symptoms of four potato varieties infected with Potato spindle tuber viroid (PSTVd)[J]. Plant Protection,2014,40(6):159-163. [18] 姜丽丽.农杆菌介导的BcBCP1 基因转化马铃薯抗旱性研究[D].哈尔滨:东北农业大学,2008:21-22.doi:10.7666/d.y1403917. Jiang L L. Agrobacterium -mediated transformation of potato with drought resistance gene BcBCP1[D]. Harbin:Northeast Agricultural University,2008:21-22. [19] Kis A,Tholt G,Ivanics M,Várallyay É,Jenes B,Havelda Z. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature[J]. Molecular Plant Pathology,2016,17(3):427-437.doi:10.1111/mpp. 12291. [20] Sánchez-Gutiérrez A,Ovando-Medina I,Adriano-Anaya L,Vázquez-Ovando A,Salvador-Figueroa M.Dynamics of miR156 and miR172 involved in the flowering of Jatropha curcas L.[J]. Acta Botanica Brasilica,2018,32(1):99-106.doi:10.1590/0102-33062017abb0179. [21] Castrob Á,Quirozc D,Sáncheza E,de los Ángeles Micconoa M,Aguirrea C,Ramírezd A,Montesa C,Prieto H.Synthesis of an artificial Vitis vinifera miRNA 319e using overlapping long primers and its application for gene silencing[J]. Journal of Biotechnology,2016,233:200-210.doi:10.1016/j.jbiotec.2016.06.028. [22] Wang X M,Yang Y,Yu C L,Zhou J,Cheng Y,Yan C Q,Chen J P. A highly efficient method for construction of rice artificial microRNA vectors[J]. Molecular Biotechnology,2010,46(3):211-218.doi:10.1007/s12033-010-9291-4. [23] Liu C,Zhang L,Sun J,Luo Y Z,Wang M B,Fan Y L,Wang L.A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis[J]. Molecular Biology Reports,2010,37(2):903-909.doi:10.1007/s11033-009-9713-1. [24] Li H,Deng Y,Wu T L,Subramanian S,Yu O. Misexpression of miR482,miR1512,and miR1515 increases soybean nodulation[J]. Plant Physiology,2010,153(4):1759-1770.doi:10.1104/pp.110.156950. [25] 艾涛波. amiRNA介导抗性转基因烟草植株的抗病性分析[D].泰安:山东农业大学,2010:82-83.doi:10.7666/d.y1786172. Ai T B. Analysis of the resistance mediated by amiRNA silencing in transgenic tobacco plants[D].Taian:Shangdong Agricultural University,2010:82-83. [26] Brodersen P,Sakvarelidze-Achard L,Bruun-Rasmussen M,Dunoyer P,Yamamoto Y Y,Sieburth L,Voinnet O.Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science,2008,320(5880):1185-1190.doi:10.1126/science.1159151. [27] Meister G,Landthaler M,Patkaniowska A,Dorsett Y,Teng G,Tuschl T.Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs[J]. Molecular Cell,2004,15(2):185-197.doi:10.1016/j.molcel.2004.07.007. [28] Zhao J P,Liu Q T,Hu P,Jia Q,Liu N,Yin K Q,Cheng Y,Yan F,Chen J P,Liu Y L.An efficient Potato virus X -based microRNA silencing in Nicotiana benthamiana[J]. Scientific Reports,2016,6:20573.doi:10.1038/srep20573. [29] 梁超琼.响应黄瓜绿斑驳花叶病毒侵染的黄瓜miRNA功能分析及人工miRNA介导的病毒抗性评价[D]. 北京:中国农业大学,2018. Liang C Q. Functional analysis of Cucumber green mottle mosaic virus -responsive miRNA in cucumber and evaluation of artificial miRNA-mediated virus resistance[D].Bejing:China Agriculturai University,2018. [30] Li H,Dong X X,Mao W J,Guan Y H,Zhang Z H. An effective artificial microRNA vector based on Fv-miR166 precursor from strawberry[J]. Scientia Horticulturae,2019,256:108643.doi:10.1016/j.scienta.2019.108643. [31] Li S G,Zhang N,Zhu X,Ma R,Yang J W,Tang X,Si H J. Enhanced drought tolerance with artificial microRNA-mediated StProDH1 gene silencing in potato[J]. Crop Science,2020,60(3):1462-1471.doi:10.1002/csc2.20064. [32] Zhang N N,Zhang D D,Chen S L,Gong B Q,Guo Y J,Xu L H,Zhang X N,Li J F.Engineering artificial MicroRNAs for multiplex gene silencing and simplified transgenic screen[J]. Plant Physiology,2018,178(3):989-1001.doi:10.1104/pp.18.00828. [33] Ai T,Zhang L,Gao Z,Zhu C X,Guo X. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants[J]. Plant Biology,2011,13(2):304-316.doi:10.1111/j.1438-8677.2010.00374.x. [34] Kung Y J,Lin S S,Huang Y L,Chen T C,Harish S S,Chua N H,Yeh S D.Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus[J]. Molecular Plant Pathology,2012,13(3):303-317.doi:10.1111/j.1364-3703.2011.00747.x. [35] Hameed A,Tahir M N,Asad S,Bilal R, Van Eck J,Jander G,Mansoor S. RNAi-mediated simultaneous resistance against three RNA viruses in potato[J]. Molecular Biotechnology,2017,59(2/3):73-83.doi:10.1007/s12033-017-9995-9. [36] Petchthai U,Yee C S L,Wong S M. Resistance to CymMV and ORSV in artificial microRNA transgenic Nicotiana benthamiana plants[J]. Scientific Reports,2018,8(1):9958.doi:10.1038/s41598-018-28388-9. |