[1] Hu X X, Zhang S Z, Miao H R, et al. High-density genetic map construction and identifcation of QTLs controlling Oleic and Linoleic acid in peanut using SLAF-seq and SSRs[J]. Scientific Reports,2018,8(1):5479.
[2] Bertioli D J,Cannon S B,Froenicke L,et al. The genome sequences of Arachis duranensis and Arachis ipaensis,the diploid ancestors of cultivated peanut[J]. Nature Genetics,2016,48(4):438-446.
[3] Chen W,Jiao Y,Cheng L,et al. Quantitative trait locus analysis for pod-and kernel-related traits in the cultivated peanut(Arachis hypogaea L.)[J].BMC Genetics,2016,17:25.
[4] Foncéka D,Hodo-Abalo T,Rivallan R,et al. Genetic mapping of wild introgressions into cultivated peanut:a way toward enlarging the genetic basis of a recent allotetraploid[J].BMC Plant Biology,2009,9(1):103.
[5] Gautami B,Foncéka D,Pandey M K,et al. An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut(Arachis hypogaea L.)[J]. PLoS One,2012,7(7):e41213.
[6] Hong Y,Chen X,Liang X,et al. A SSR-based composite genetic linkage map for the cultivated peanut(Arachis hypogaea L.)genome[J]. BMC Plant Biology,2010,10:17.
[7] Huang L,He H,Chen W,et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut(Arachis hypogaea L.)[J]. Theoretical and Applied Genetics,2015,128(6):1103-1115.
[8] Huang L,Ren X,Wu B,et al. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut(Arachis hypogaea L.)[J]. Scientific Reports,2016,6:39478.
[9] Pandey M K,Wang M L,Qiao L,et al. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut(Arachis hypogaea L.)[J].BMC Genetics,2014,13315(1):1-14.
[10] Qin H D,Feng S P,Chen C,et al. An integrated genetic linkage map of cultivated peanut(Arachis hypogaea L.)constructed from two RIL populations[J]. Theoretical and Applied Genetics,2012,124(4):653-664.
[11] Shirasawa K,Bertioli D J,Varshney R K,et al. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes[J]. DNA Research:an International Journal for Rapid Publication of Reports on Genes and Genomes,2013,20(2):173-184.
[12] Shirasawa K,Koilkonda P,Aoki K,et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut[J]. BMC Plant Biol,2012,12(1):80.
[13] Sujay V,Gowda M V,Pandey M K,et al. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut(Arachis hypogaea L.)[J]. Molecular Breeding:New Strategies in Plant Improvement,2012,30(2):773-788.
[14] Varshney R K,Bertioli D J,Moretzsohn M C,et al. The first SSR-based genetic linkage map for cultivated groundnut(Arachis hypogaea L.)[J]. Theoretical and Applied Genetics,2009,118(4):729-739.
[15] Wang H,Penmetsa R V,Yuan M,et al. Development and characterization of BAC-end sequence derived SSRs,and their incorporation into a new higher density genetic map for cultivated peanut(Arachis hypogaea L.)[J].BMC Plant Biol,2012,12(1):10.
[16] Zhao Y,Zhang C,Chen H,et al. QTL mapping for bacterial wilt resistance in peanut(Arachis hypogaea L.)[J].Molecular Breeding,2016,36(2):13.
[17] Zhou X,Xia Y,Ren X,et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing(ddRADseq)[J].BMC Genomics,2014,15(1):351.
[18] 张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究[D]. 杭州:浙江大学,2011.
[19] Wang H,Pandey M K,Qiao L X,et al. Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation based genetic maps derived from Tifrunner GT-C20 in peanut(Arachis hypogaea L.)[J]. The Plant Genome,2013.DOI:10.3835.
[20] Wang M L,Khera P,Pandey M K,et al. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut(Arachis hypogaea L.)[J]. PLoS One,2015,10(4):e0119454.
[21] 成良强,唐梅,任小平,等. 栽培种花生遗传图谱的构建及主茎高和总分枝数QTL分析[J]. 作物学报,2015,41(6):979-987.
[22] 慈敦伟,张智猛,丁红,等. 花生苗期耐盐性评价及耐盐指标筛选[J]. 生态学报,2015,35(3):805-814.
[23] 吴兰荣,陈静,许婷婷,等. 花生全生育期耐盐鉴定研究[J]. 花生学报,2005,34(1):20-24.
[24] 沈一,刘永惠,陈志德,等. 花生幼苗期耐盐品种的筛选与评价[J]. 花生学报,2012,41(1):10-15.
[25] 魏光成,闫苗苗. 3种花生盐胁迫下生理指标变化的研究[J]. 安徽农业科学,2010,38(19):10026-10027.
[26] 石运庆,胡晓辉. 苗华荣,等.盐碱胁迫对花生脂肪酸品质的影响[J]. 山东农业科学,2017,49(2):44-47.
[27] Lei M,Li H,Zhang L et al. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal,2015,3(3):14.
[28] 王亚,郭宝太,乔利仙,等. PyTPS转化花生对其后代耐盐性和品质性状的影响[J]. 华北农学报,2014,29(5):175-179.
[29] 宗自卫,常陆林. 转BADH基因花生幼苗抗盐性研究[J]. 安徽农业科学,2009,37(15):5867-5868.
[30] 王宝枝. 花生耐盐基因的克隆与表达谱分析[D]. 济南:山东师范大学,2010.
[31] Chen N,Yang Q L,Su M W,et al. Cloning of six ERF family transcription factor genes from peanut and analysis of their expression during abiotic stress[J]. Plant Molecular Biology Reporter,2012,30(6):1415-1425. |