[1] |
|
|
Zheng L Y. Arbuscular mycorrhizal seedling afforestation technology-an effective measure to promote vegetation restoration[J]. Practical Forestry Technology, 2010(5):58-60.
|
[2] |
Wei X Y, Chen J J, Zhang C Y, Pan D M. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth[J]. Frontiers in Plant Science, 2016, 7:1594.doi: 10.3389/fpls.2016.01594.
|
[3] |
Khouja H R, Daghino S, Abbà S, Boutaraa F, Chalot M, Blaudez D, Martino E, Perotto S. OmGOGAT-disruption in the ericoid mycorrhizal fungus Oidiodendron maius induces reorganization of the N pathway and reduces tolerance to heavy-metals[J]. Fungal Genetics and Biology, 2014, 71:1-8.doi: 10.1016/j.fgb.2014.08.003.
pmid: 25128845
|
[4] |
Hestrin R, Hammer E C, Mueller C W, Lehmann J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition[J]. Communications Biology, 2019, 2:233.doi: 10.1038/s42003-019-0481-8.
pmid: 31925041
|
[5] |
Wurzburger N, Higgins B P, Hendrick R L. Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub[J]. Ecology and Evolution, 2012, 2(1):65-79.doi: 10.1002/ece3.67.
pmid: 22408727
|
[6] |
Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(6853):297-299.doi: 10.1038/35095041.
|
[7] |
Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J]. New Phytologist, 2009, 181(1):199-207.doi: 10.1111/j.1469-8137.2008.02630.x.
pmid: 18811615
|
[8] |
Gachomo E, Allen J W, Pfeffer P E, Govindarajulu M, Douds D D, Jin H R, Nagahashi G, Lammers P J, Shachar-Hill Y, Bücking H. Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids[J]. New Phytologist, 2009, 184(2):399-411.doi: 10.1111/j.1469-8137.2009.02968.x.
pmid: 19659660
|
[9] |
Duan J F, Tian H, Drijber R A, Gao Y J. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat ( Triticum aestivum L.)[J]. Plant Physiology and Biochemistry, 2015, 96:199-208.doi: 10.1016/j.plaphy.2015.08.006.
URL
|
[10] |
Koegel S, Boller T, Lehmann M F, Wiemken A, Courty P E. Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis[J]. Plant Signaling & Behavior, 2013, 8(8):e25229.doi: 10.4161/psb.25229.
|
[11] |
Ingraffia R, Amato G, Sosa-Hernández M A, Frenda A S, Rillig M C, Giambalvo D. Nitrogen type and availability drive mycorrhizal effects on wheat performance,nitrogen uptake and recovery,and production sustainability[J]. Frontiers in Plant Science, 2020, 11:760.doi: 10.3389/fpls.2020.00760.
pmid: 32636854
|
[12] |
|
|
Xu M L, Zhu J J, Sun J D, Kang H Z, Xu H, Zhang H W. A review on the relationships between forest ectomycorrhizal fungi and environmental factors[J]. Chinese Journal of Ecology, 2004, 23(5):212-217.
|
[13] |
Tibbett M, Sanders F E. Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality[J]. Annals of Botany, 2002, 89(6):783-789.doi: 10.1093/aob/mcf129.
pmid: 12102534
|
[14] |
Tomè E, Tagliavini M, Scandellari F. Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi[J]. Journal of Plant Physiology, 2015, 179:83-89.doi: 10.1016/j.jplph.2015.02.008.
pmid: 25841208
|
[15] |
Toro M, Azcón R, Barea J M. The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype,mycorrhizal fungi,phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa[J]. New Phytologist, 1998, 138(2):265-273.doi: 10.1046/j.1469-8137.1998.00108.x.
pmid: 33863097
|
[16] |
Ibijbijen J, Urquiaga S, Ismaili M, Alves B J R, Boddey R M. Effect of arbuscular mycorrhizal fungi on growth,mineral nutrition and nitrogen fixation of three varieties of common beans ( Phaseolus vulgaris)[J]. New Phytologist, 1996, 134(2):353-360.doi: 10.1111/j.1469-8137.1996.tb04640.x.
URL
|
[17] |
Scheublin T R, van der Heijden M G A. Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species[J]. New Phytologist, 2006, 172(4):732-738.doi: 10.1111/j.1469-8137.2006.01858.x.
pmid: 17096798
|
[18] |
Abuarghub S M, Read D J. The biology of mycorrhiza in the ericaceae XI.The distribution of nitrogen in soil of a typical upland Callunetum with special reference to the free amino acids[J]. New Phytologist, 1988, 108(4):425-431.doi: 10.1111/j.1469-8137.1988.tb04183.x.
URL
|
[19] |
Engelberth J, Schmelz E A, Alborn H T, Cardoza Y J, Huang J, Tumlinson J H. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry[J]. Analytical Biochemistry, 2003, 312(2):242-250.doi: 10.1016/s0003-2697(02)00466-9.
pmid: 12531212
|
[20] |
Starratt A N. Herbivores:their interaction with secondary plant metabolites G.A.[J]. Pesticide Biochemistry and Physiology, 1980, 13(2):202-203.doi: 10.1016/0048-3575(80)90073-5.
URL
|
[21] |
|
[22] |
Talbot J M, Treseder K K. Controls over mycorrhizal uptake of organic nitrogen[J]. Pedobiologia-International Journal of Soil Biology, 2010, 53(3):169-179.doi: 10.1016/j.pedobi.2009.12.001.
|
[23] |
陶晶, 邬奇峰, 石江, 李松昊, 葛江飞, 陈俊辉, 徐秋芳, 梁辰飞, 秦华. 间作与接种丛枝菌根真菌对新垦山地玉米产量和土壤肥力的影响[J]. 浙江农业学报, 2020, 32(1):115-123.doi: 10.3969/j.issn.1004-1524.2020.01.15.
|
|
Tao J, Wu Q F, Shi J, Li S H, Ge J F, Chen J H, Xu Q F, Liang C F, Qin H. Impact of intercropping and arbuscular mycorrhizal fungi on soil fertility and corn yield in a newly cultivated mountain land[J]. Acta Agriculturae Zhejiangensis, 2020, 32(1):115-123.
doi: 10.3969/j.issn.1004-1524.2020.01.15
|
[24] |
Hawkins H J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226(2):275-285.doi: 10.1023/A:1026500810385.
URL
|
[25] |
|
|
Chen Y L, Chen B D, Liu L, Hu Y J, Xu T L, Zhang X. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling[J]. Acta Ecologica Sinica, 2014, 34(17):4807-4815.
|
[26] |
|
|
Li X, Zhang J L. Uptake of different forms of nitrogen by hyphae of arbuscular mycorrhizal fungi[J]. Journal of Nuclear Agricultural Sciences, 2007, 21(2):195-200.
|
[27] |
Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(5): 297-299. doi: 10.1038/35095041.
|
[28] |
Martin R, Petra B, Hana H, Michala K, Martin D, Katerˇina G, Jan J. Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist[J]. The ISME Journal, 2022, 16(3):676-685.doi: 10.1038/s41396-021-01112-8.
URL
|
[29] |
Ray P, Guo Y Q, Chi M H, Krom N, Saha M C, Craven K D. Serendipita bescii promotes winter wheat growth and modulates the host root transcriptome under phosphorus and nitrogen starvation[J]. Environmental Microbiology, 2021, 23(4):1876-1888.doi: 10.1111/1462-2920.15242.
URL
|
[30] |
Whiteside M D, Treseder K K, Atsatt P R. The brighter side of soils:quantum dots track organic nitrogen through fungi and plants[J]. Ecology, 2009, 90(1):100-108.doi: 10.1890/07-2115.1.
pmid: 19294917
|
[31] |
Zhang Z H, Li M M, Cao B L, Chen Z J, Xu K. Grafting improves tomato yield under low nitrogen conditions by enhancing nitrogen metabolism in plants[J]. Protoplasma, 2021, 258(5):1077-1089.doi: 10.1007/s00709-021-01623-3.
pmid: 33616734
|
[32] |
|
|
Shu Z F, Wang L L, Lou Y H, Ji Q Y, Shao J N, Liu Y, He W Z. Research progress on accumulation mechanism of L-theanine in albino tea plant[J]. Food Research and Development, 2020, 41(17):217-224.
|
[33] |
|
|
Zhou W L, Liu W K, Yang Q C. Effect of light on nitrate accumulation in vegetables and its mechanism[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S2): 125-130.
|
[34] |
|
|
Liu Y Y, Huang X X, Geng Y Q, Guo L Y, Jin F, Shao X W. Effects of soda saline-alkali stress on growth and nitrogen metabolism key enzyme of rice[J]. Journal of Jilin Agricultural University, 2020, 42(5):493-501.
|
[35] |
|
|
Cao L X, Fu Y, Hou W F, Wu E. The role and the research prospect of arbuscular mycorrhizal in degraded ecosystem restoration[J]. Northern Horticulture, 2015(14): 182-189.
|
[36] |
Cao J L, Shao Y D, Zou Y N, Wu Q S, Yang T Y, Kucˇa K. Inoculation with Clariodeoglomus etunicatum improves leaf food quality of tea exposed to P stress[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(1):12166-12169.doi: 10.15835/nbha49112166.
URL
|
[37] |
Kchikich A, El Omari R, Kabach I, Yasri A, Nhiri M, Ben Mrid R. Effect of arbuscular mycorrhizal fungus and the γ-aminobutyric acid treatment in nitrate assimilation under nitrogen deficiency in sorghum Plant[J]. Russian Journal of Plant Physiology, 2021, 68(5):901-908.doi: 10.1134/S102144372105006X.
|
[38] |
Cui G C, Zhang Y, Zhang W J, Lang D Y, Zhang X J, Li Z X, Zhang X H. Response of carbon and nitrogen metabolism and secondary metabolites to drought stress and salt stress in plants[J]. Journal of Plant Biology, 2019, 62(6):387-399.doi: 10.1007/s12374-019-0257-1.
|
[39] |
|
|
Leng X. The biological functions and the mechanism of alleviating ammonium toxicity of PagGS1;2 and PagNADH-GOGAT2 in Populusalbox P.glandulosa[D]. Harbin:Northeast Forestry University, 2022.
|
[40] |
Chalot M, Brun A, Finlay R D, Söderström B. Metabolism of 14C glutamate and 14C glutamine by the ectomycorrhizal fungus Paxillus involutus[J]. Microbiology-sgm, 1994, 140(7):1641-1649.doi: 10.1099/13500872-140-7-1641.
URL
|
[41] |
Vézina L P, Margolis H A, McAfee B J, Delaney S. Changes in the activity of enzymes involved with primary nitrogen metabolism due to ectomycorrhizal symbiosis on jack pine seedlings[J]. Physiologia Plantarum, 1989, 75(1):55-62. doi: 10.1111/j.1399-3054.1989.tb02063.x.
URL
|
[42] |
|
|
Deng Y, Shen H, Guo T. Review of researches on nitrogen utilized by arbuscular mycorrhiza[J]. Acta Ecologica Sinica, 2009, 29(10):5627-5635.
|
[43] |
Pérez-Tienda J, Testillano P S, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N. GintAMT2,a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices[J]. Fungal Genetics and Biology, 2011, 48(11):1044-1055.doi: 10.1016/j.fgb.2011.08.003.
pmid: 21907817
|
[44] |
Rouphael Y, Lucini L, Miras-Moreno B, Colla G, Bonini P, Cardarelli M. Metabolomic responses of maize shoots and roots elicited by combinatorial seed treatments with microbial and non-microbial biostimulants[J]. Frontiers in Microbiology, 2020, 11:664.doi: 10.3389/fmicb.2020.00664.[LinkOut]
pmid: 32435233
|
[45] |
Koegel S, Brulé D, Wiemken A, Boller T, Courty P E. The effect of different nitrogen sources on the symbiotic interaction between Sorghum bicolor and Glomus intraradices:Expression of plant and fungal genes involved in nitrogen assimilation[J]. Soil Biology and Biochemistry, 2015, 86:159-163.doi: 10.1016/j.soilbio.2015.03.003.
URL
|
[46] |
Wu Y J, Chen C J, Li J Z, Wang G A. Effects of arbuscular mycorrhizal fungi on maize nitrogen uptake strategy under different soil water conditions[J]. Plant and Soil, 2021, 464(1/2):441-452.doi: 10.1007/s11104-021-04972-3.
|
[47] |
Pumplin N, Harrison M J. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis[J]. Plant Physiology, 2009, 151(2):809-819.doi: 10.1104/pp.109.141879.
pmid: 19692536
|
[48] |
Guether M, Neuha? user B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi[J]. Plant Physiology, 2009, 150(1):73-83.doi: 10.1104/pp.109.136390.
pmid: 19329566
|
[49] |
Zhou Z H, Wang C K, Jin Y, Gu J C. Effects of long-term nitrogen addition on soil fungal communities in two temperate plantations with different mycorrhizal associations[J]. Applied Soil Ecology, 2021(168): 7.doi: 10.1016/j.apsoil.2021.104111.
|
[50] |
|
[51] |
Newman E I. Mycorrhizal links between plants:Their functioning and ecological significance[J]. Advances in Ecological Research, 1988, 18:243-270.doi: 10.1016/S0065-2504(08)60182-8.
|
[52] |
Smith M D, Hartnett D C, Wilson G W T. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie[J]. Oecologia, 1999, 121(4):574-582.doi: 10.1007/s004420050964.
pmid: 28308367
|
[53] |
Wang Y T, Li Y W, Li S S, Rosendahl S. Ignored diversity of arbuscular mycorrhizal fungi in co-occurring mycotrophic and non-mycotrophic plants[J]. Mycorrhiza, 2021, 31(1):93-102.doi: 10.1007/s00572-020-00997-1.
pmid: 33140218
|
[54] |
Clark C M, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(7179):712-715.doi: 10.1038/nature06503.
|
[55] |
Hautier Y, Niklaus P A, Hector A. Competition for light causes plant biodiversity loss after eutrophication[J]. Science, 2009, 324(5927):636-638.doi: 10.1126/science.1169640.
pmid: 19407202
|
[56] |
Johnson N C, Rowland D L, Corkidi L, Egerton-Warburton L M, Allen E B. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands[J]. Ecology,2003, 84(7):1895-1908.doi: 10.1890/0012-9658(2003)084[1895:neamaa]2.0.co;2.
URL
|
[57] |
Mohan J E, Cowden C C, Baas P, Dawadi A, Frankson P T, Helmick K, Hughes E, Khan S, Lang A, Machmuller M, Taylor M, Allen Witt C. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change:Mini-review[J]. Fungal Ecology, 2014, 10:3-19.doi: 10.1016/j.funeco.2014.01.005.
URL
|
[58] |
Liu W, Jiang S S, Zhang Y L, Yue S C, Christie P, Murray P J, Li X L, Zhang J L. Spatiotemporal changes in arbuscular mycorrhizal fungal communities under different nitrogen inputs over a 5-year period in intensive agricultural ecosystems on the North China Plain[J]. FEMS Microbiology Ecology, 2014, 90(2):436-453.doi: 10.1111/1574-6941.12405.
pmid: 25098725
|
[59] |
Liu T Y, Hao L F, Bai S L, Wang Y L. Ecoenzymatic stoichiometry and microbial nutrient limitation of shrub rhizosphere soils in response to arbuscular mycorrhizal fungi inoculation[J]. Journal of Soils and Sediments, 2022, 22(2):594-606.doi: 10.1007/s11368-021-03096-6.
|
[60] |
Bradley K, Drijber R A, Knops J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2006, 38(7):1583-1595.doi: 10.1016/j.soilbio.2005.11.011.
URL
|