[1] Peleg Z, Apse M P, Blumwald E. Engineering salinity and water-stress tolerance in crop plants:getting closer to the field[J]. Advances in Botanical Research, 2011, 57:405-443. doi:10.1016/b978-0-12-387692-8.00012-6. [2] Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors:their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7):15811-15851. doi:10.3390/ijms160715811. [3] Riederer M, Schreiber L. Protecting against water loss:analysis of the barrier properties of plant cuticles[J]. Journal of Experimental Botany, 2001, 52(363):2023-2032.doi:10.1093/jexbot/52.363.2023. [4] 倪郁, 郭彦军. 植物超长链脂肪酸及角质层蜡质生物合成相关酶基因研究现状[J]. 遗传, 2008, 30(5):561-567. doi:10.3724/SP.J.1005.2008.00561. N Y, Guo Y J. Progress in the study on genes encoding enzymes involved in biosynthesis of very long chain fatty acids and cuticular wax in plants[J]. Hereditas, 2008, 30(5):561-567. [5] Bernard A, Domergue F, Pascal S,Jetter R, Renne C, Faure J D, Haslam R P, Napier J A, Lessire R, Joubè s J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERSUM1 and ECERIFERUM3 are core components of a very long-chain alkane synthesis complex[J].The Plant Cell, 2012, 24(7):3106-3118. doi:10.1105/tpc.112.099796. [6] Bourdenx B, Bemard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubès J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-Long-Chain alkane biosynthesis and influences plant response to biotic and abiotic stresses[J]. Plant Physiology, 2011, 156(1):29-45. doi:10.1104/pp.111.172320. [7] Hannoufa A, McNevin J, Lemieux B. Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana[J]. Phytochemistry, 1993, 33(4):851-855. doi:10.1016/0031-9422(93)85289-4. [8] 周玲艳, 姜大刚, 李静, 周海, 曹伟炜, 庄楚雄. 逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1 表达的关系[J]. 作物学报, 2012, 38(6):1115-1120. doi:10.3724/SP.J.1006.2012.01115. Zou L Y, Jiang D G, Li J, Zhou H, Cao W W, Zhuang C X. Effect of stresses on leaf cuticular wax accumulation and its relationship to expression of OsGL1 -Homologous genes in rice[J]. Acta Agronomica Sinica, 2012, 38(6):1115-1120. [9] 王益民, 张珂, 许飞华, 王玉, 任晓卫, 张宝琳. 不同品种枸杞子营养成分分析及评价[J]. 食品科学, 2014, 35(1):34-38. doi:10.7506/spkx1002-6630-201401007. Wng Y M, Zhang K, Xu F H, Wang Y, Ren X W, Zhang B L. Chemical analysis and nutritional evaluation of different varieties of Goji berries (Lycium barbarum L.)[J]. Food Science, 2014, 35(1):34-38. [10] Yao R Y, Huang C, Chen X F, Yin Z Q, Fu Y P, Li L X, Feng B, Song X, He C L, Yue G Z, Jing B, Lǖ C, Su G, Ye G, Zou Y F. Two complement fixing pectic polysaccharides from pedicel of Lycium barbarum L. promote cellular antioxidant defense[J]. International Journal of Biological Macromolecules, 2018, 112:356-363. doi:10.1016/j.ijbiomac.2018.01.207. [11] 袁惠君, 刘轲, 王春梅, 谢辉灿, 李虎军, 贾鸿震. 两个宁夏枸杞品种的耐渗透胁迫和耐盐特征比较[J]. 草业科学, 2016, 33(4):681-690. doi:10.11829/j.issn.1001-0629.2015-0526. Yan H J, Liu K, Wang C M, Xie H C, Li H J, Jia H Z. The differences between two cultivars of Lycium barbarum in osmotic stress tolerance and salt tolerance[J]. Pratacultural Science, 2016, 33(4):681-690. [12] 阎文飞, 程凡升, 姜新强, 刘翠霞, 朱丹. 野大豆盐碱胁迫相关GsTIFY6B 基因克隆及表达特性分析[J]. 华北农学报, 2018, 33(4):82-89. doi:10.7668/hbnxb.2018.04.012. Yn W F, Cheng F S, Jiang X Q, Liu C X, Zhu D. Cloning and expression analysis of GsTIFY6B associated with saline and alkali stress in Glycine soja[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(4):82-89. [13] 范琪, 马彦妮, 陈佰鸿, 左存武, 毛娟. 葡萄CO4 基因的克隆及其对光质响应的表达分析[J]. 华北农学报, 2018, 33(4):90-97. doi:10.7668/hbnxb.2018.04.013. Fn Q, Ma Y N, Chen B H, Zuo C W, Mao J. Cloning and expression analysis of CO4 gene in the different light qualities and light transfers of grapevine[J]. Agriculturae Boreali-Sinica, 2018, 33(4):82-89. [14] 王俊斌, 杨文丽, 丁博, 吴天文, 王海凤, 谢晓东. 小麦TaWRKY71a 基因克隆、生物信息学及表达分析[J]. 华北农学报, 2018, 33(3):7-13. doi:10.7668/hbnxb.2018.03.002. Wng J B, Yang W L, Ding B, Wu T W, Wang H F, Xie X D. Cloning,bioinformatics and expression analysis of TaWRKY71a gene in wheat[J]. Agriculturae Boreali-Sinica, 2018, 33(3):7-13. [15] Aarts M G M, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility[J]. The Plant Cell, 1995, 7(12):2115-2127. doi:10.2307/3870155. [16] 汤贤春, 钱倩, 罗才林, 王蕾, 钱刚. 千里光脂肪醛脱羰基酶(CER1蛋白)的保守基序(CSM)与功能结构域分析[J]. 生命科学研究, 2016, 20(5):395-400. doi:10.16605/j.cnki.1007-7847.2016.05.004. Tng X C, Qian Q, Luo C L, Wang L, Qian G. Analysis of conserved sequence Motif (CSM) and functional/structural domains of fatty-aldehyde decarbonylase (CER1 Protein) in Senecio scandens Buch.-Ham. ex D. Don[J]. Life Science Research, 2016, 20(5):395-400. [17] Kim S, Park M, Yeom S I, Kim Y M, Lee J M, Lee H A, Seo E, Choi J, Cheong K, Kim K T, Jung K, Lee G W, Oh S K, Bae C, Kim S B, Lee H Y, Kim S Y, Kim M S, Kang B C, Jo Y D, Yang H B, Jeong H J, Kang W H, Kwon J K, Shin C, Lim J Y, Park J H, Huh J H, Kim J S, Kim B D, Cohen O, Paran I,Suh M C,Lee S B, Kim Y K, Shin Y, Noh S J, Park J, Seo Y S, Kwon S Y, Kim H A, Park J M, Kim H J, Choi S B, Bosland P W, Reeves G, Jo S H, Lee B W, Cho H T, Choi H S, Lee M S, Yu Y, Do Choi Y, Park B S, van Deynze A, Ashrafi H, Hill T, Kim W T, Pai H S, Ahn H K, Yeam I, Giovannoni J J, Rose J K C, Sørensen I, Lee S J, Kim R W, Choi I Y, Choi B S, Lim J S, Lee Y H, Choi D. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species[J]. Nature Genetics, 2014, 46(3):270-278. doi:10.1038/ng.2877. [18] Lee S B, Kim H, Kim R J, Suh M C. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation[J]. Plant Cell Reports, 2014, 33(9):1535-1546. doi:10.1007/s00299-014-1636-1. [19] Motamayor J C, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O, Findley S D, Zheng P, Utro F, Royaert S, Saski C, Jenkins J, Podicheti R, Zhao M X, Scheffler B E, Stack J C, Feltus F A, Mustiga G M, Amores F, Phillips W, Marelli J P, May G D, Shapiro H, Ma J X, Bustamante C D, Schnell R J, Main D, Gilbert D, Parida L, Kuhn D N. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color[J]. Genome Biology, 2013, 14(6):1-25. doi:10.1186/gb-2013-14-6-r53. [20] Pu Y Y, Gao J, Guo Y L, Liu T T, Zhu L X, Xu P, Yi B, Wen J, Tu J X, Ma C Z, Fu T D, Zou J T, Shen J X. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus[J]. BMC Plant Biology, 2013, 13(1):215-229. doi:10.1186/1471-2229-13-215. [21] Hu X J, Zhang Z B, Li W Q, Fu Z Y, Zhang S X, Xu P. cDNA cloning and expression analysis of a putative decarbonylase TaCer1, from wheat (Triticum aestivum L.)[J]. Acta Physiologiae Plantarum, 2009, 31(6):1111-1118. doi:10.1007/s11738-009-0329-9. [22] Alexandrov N N, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H Y, Swaller T J, Lu Y P, Bouck J, Flavell R B. Insights into corn genes derived from large-scale cDNA sequencing[J]. Plant Molecular Biology, 2009, 69(1/2):179-194. doi:10.1007/s11103-008-9415-4. [23] Soltis P S, Soltis D E. The origin and diversification of angiosperms[J]. American Journal of Botany, 2004, 91(10):1614-1626. doi:10.3732/ajb.91.10.1614. [24] Kamigaki A, Kondo M, Mano S, Hayashi M, Nishimura M. Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana[J]. Plant & Cell Physiology, 2009, 50(12):2034-2046. doi:10.1093/pcp/pcp152. [25] Lee S B, Suh M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports, 2015, 34(4):557-572.doi:10.1007/s00299-015-1772-2. |