[1] 李怀方,刘凤权,郭小密.园艺植物病理学[M].北京:中国农业大学出版社,2001:246.
[2] 吴洪生,周晓冬,李鹤,等.黄瓜、西瓜枯萎病拮抗细菌的初步分离与鉴定[J].西南农业学报,2013,26(3):1019-1025.
[3] 孙正祥,王丰,黄玲,等.西瓜枯萎病生防菌XG-1的筛选、鉴定及其抑菌作用[J].江西农业大学学报,2013,35(2):324-328.
[4] 岳菊,刘邮洲,张荣胜,等.西瓜枯萎菌拮抗细菌的筛选,鉴定及防效测定[J].中国生物防治学报,2011,27(3):428-432.
[5] Ling N,Huang Q W,Guo S W,et al. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. Niveum[J].Plant and Soil,2011,341(1/2):485-493.
[6] 宋顺华,吴萍,邢宝田,等.多粘类芽胞杆菌WY110对西瓜枯萎病的控制作用[J].植物保护学报,2011,38(6):571-572.
[7] 赵丽明,丁延芹,路晓萌,等.西瓜根际枯萎病拮抗放线菌的筛选及鉴定[J].生物技术通报,2010(5):107-110.
[8] 纪明山,王英姿,程根武,等.西瓜枯萎病拮抗菌株筛选及田间防效试验[J].中国生物防治,2002,18(2):71-74.
[9] 赵国其,林福呈,陈卫良.绿色木霉对西瓜枯萎病苗期的控制作用[J].浙江农业学报,1998,10(4):206-209.
[10] Latz E,Eisenhauer N,Rall B C,et al.Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities[J].Journal of Ecology,2012,100(3):597-604.
[11] 曹云,马艳.间套作防治作物土传枯萎病的研究进展[J].土壤,2015,47(3):466-473.
[12] 姜丽.茼蒿对西瓜化感作用的初步研究[D].合肥:安徽农业大学,2007:33-34.
[13] 张宁,张如,吴萍,等.根系分泌物在西瓜/旱作水稻间作减轻西瓜枯萎病中的响应[J].土壤学报,2014,51(3):585-593.
[14] 任丽轩.旱作水稻/西瓜间作抑制西瓜枯萎病的生理机制[D].南京:南京农业大学,2012.
[15] 杨智仙,汤利,郑毅,等.不同品种小麦与蚕豆间作对蚕豆枯萎病发生、根系分泌物和根际微生物群落功能多样性的影响[J].植物营养与肥料学报,2014,20(3):570-579.
[16] 董艳,董坤,郑毅,等.不同品种小麦与蚕豆间作对蚕豆枯萎病的防治及其机理[J].应用生态学报,2014,25(7):1979-1987.
[17] 沈萍,范秀荣,李广武.微生物学实验[M].北京:人民教育出版社,1980:69-82.
[18] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
[19] Bric J M,Bostock R M,Silverstone S E.Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane[J].Applied and Environmental Microbiology,1991,57(2):535-538.
[20] Schwyn B,Neilands J B.Universal chemical assay for the detection and determination of siderophores[J].Analytical Biochemistry,1987,160(1):47-56.
[21] Bakker A W,Schippers B.Microbial cyanide production in therhizosphere in relation to potato yield reduction and Pseudomonas spp.mediated plant growth stimulation[J].Soil Biology and Biochemistry,1987,19(4):451-457.
[22] Nautiyal C S.An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J].FEMS Microbiology Letters,1999,170(1):265-270.
[23] Kumar R S,Ayyadurai N,Pandiaraja P,et al.Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits[J].Journal of Applied Microbiology,2005,98(1):145-154.
[24] Cappuccino J G,Sherman N.Microbiology-A Laboratory Manual[M].1st ed.California:The Benjamin/Cummings Publishing Co,1992:105-300.
[25] Alvindia D G.Enhancing the bioefficacy of Bacillus amyloliquefaciens DGA14 with inorganic salts for the control of banana crown rot[J].Crop Protection,2013,51(3):1-6.
[26] Yuan S,Wang L,Wu K,et al.Evaluation of Bacillus-fortilied organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments[J].Applied Soil Ecology,2014,75:86-94.
[27] Alvarez F,Castro M,Príncipe A,et al.The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease[J].Journal of Applied Microbiology,2012,112(1):159-174.
[28] Chen X H,Koumoutsi A,Scholz R,et al.Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens[J].Journal of Biotechnology,2009,140(1/2):27-37. |