[1] Yin S, Jiang X H, Jiang H W, Gao Q, Wang F, Fan S X, Khan T, Jabeen N, Khan M, Ali A, Xu P, Pandita T K, Fan H Y, Zhang Y W, Shi Q H. Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels[J]. Development, 2017, 144(12):2165-2174. doi:10.1242/dev.149518. [2] Ma P, Schultz R M. HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos:Specificity versus compensation[J]. Cell Death and Differentiation, 2016, 23(7):1119-1127. doi:10.1038/cdd.2016.31. [3] Neto F T L, Bach P V, Najari B B, Li P S, Goldstein M. Spermatogenesis in humans and its affecting factors[J]. Seminars in Cell & Developmental Biology, 2016, 59:10-26. doi:10.1016/j.semcdb.2016.04.009. [4] Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells[J]. Nature, 2005, 434(7033):583-589.doi:10.1038/nature03368. [5] Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debernardi A, Héry P, Curtet S, Jamshidikia M, Barral S, Holota H, Bergon A, Lopez F, Guardiola P, Pernet K, Imbert J, Petosa C, Tan M J, Zhao Y M, Gérard M, Khochbin S.Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B[J]. Genes & Development, 2013, 27(15):1680-1692. doi:10.1101/gad.220095.113. [6] Tang B L. Sirt1 and the mitochondria[J]. Molecules and Cell, 2016, 39(2):87-95. doi:10.14348/molcells.2016.2318. [7] Jung-Hynes B, Reiter R J, Ahmad N. Sirtuins, melatonin and circadian rhythms:building a bridge between aging and cancer[J]. Journal of Pineal Research, 2010, 48(1):9-19. doi:10.1111/j.1600-079X.2009.00729.x. [8] Kosciuk T, Wang M, Hong J Y, Lin H N. Updates on the epigenetic roles of sirtuins[J]. Current Opinion in Chemical Biology, 2019, 51:18-29.doi:10.1016/j.cbpa.2019.01.023. [9] Kolthur-Seetharam U, Teerds K, de Rooij D G, Wendling O, McBurney M, Sassone-Corsi P, Davidson I. The histone deacetylase SIRT1 controls male fertility in mice through regulation of hypothalamic-pituitary gonadotropin signaling[J]. Biology of Reproduction, 2009, 80(2):384-391.doi:10.1095/biolreprod.108.070193. [10] Bell E L, Nagamori I, Williams E O, Del Rosario A M, Bryson B D, Watson N, White F M, Sassone-Corsi P, Guarente L. SirT1 is required in the male germ cell for differentiation and fecundity in mice[J]. Development, 2014, 141(18):3495-3504. doi:10.1242/dev.110627. [11] Gong J S, Zhang Q W, Wang Q, Ma Y J, Du J X, Zhang Y, Zhao X X. Identification and verification of potential piRNAs from domesticated yak testis[J]. Reproduction, 2018, 155(2):117-127. doi:10.1530/REP-17-0592. [12] Zi X D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement[J].Theriogenology, 2003, 59(5-6):1303-1312.doi:10.1016/s0093-691x(02)01172-x. [13] Kalwar Q, Ding X Z, Ahmad A A, Chu M, Wu X Y, Bao P J, Yan P. Expression analysis of IZUMO1 gene during testicular development of Datong yak (Bos grunniens)[J]. Animals (Basel), 2019, 9(6):292. doi:10.3390/ani9060292. [14] Koprinarova M, Schnekenburger M, Diederich M. Role of histone acetylation in cell cycle regulation[J]. Current Topics in Medicinal Chemistry, 2016, 16(7):732-744. doi:10.2174/1568026615666150825140822. [15] Peleg S, Feller C, Ladurner A G, Imhof A. The metabolic impact on histone acetylation and transcription in ageing[J]. Trends in Biochemical Sciences, 2016, 41(8):700-711. doi:10.1016/j.tibs.2016.05.008. [16] Kwak S S, Cheong S A, Yoon J D, Jeon Y, Hyun S H. Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization[J]. Theriogenology, 2012, 78(7):1597-1610. doi:10.1016/j.theriogenology.2012.07.006. [17] Zhang T, Zhou Y, Li L, Wang H H, Ma X S, Qian W P, Shen W, Schatten H, Sun Q Y. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging[J]. Aging (Albany NY), 2016, 8(4):685-696. doi:10.18632/aging.100911. [18] Luo L L, Chen X C, Fu Y C, Xu J J, Li L, Lin X H, Xiang Y F, Zhang X M. The effects of caloric restriction and a high-fat diet on ovarian lifespan and the expression of SIRT1 and SIRT6 proteins in rats[J]. Aging Clinical and Experimental Research, 2012, 24(2):125-133. doi:10.3275/7660. [19] North B J, Verdin E. Sirtuins:Sir2-related NAD- dependent protein deacetylases[J]. Genome Biology, 2004, 5(5):224. doi:10.1186/gb-2004-5-5-224. [20] Lu P, Kamboj A, Gibson S B, Anderson C M. Poly(ADP-ribose) polymerase-1 causes mitochondrial damage and neuron death mediated by Bnip3[J]. The Journal of Neuroscience, 2014, 34(48):15975-15987. doi:10.1523/JNEUROSCI.2499-14.2014. [21] Ford J, Ahmed S, Allison S, Jiang M, Milner J. JNK2-dependent regulation of SIRT1 protein stability[J]. Cell Cycle, 2008, 7(19):3091-3097. doi:10.4161/cc.7.19.6799. [22] Han C F, Gu Y C, Shan H, Mi W Y, Sun J H, Shi M H, Zhang X H, Lu X Z, Han F, Gong Q H, Yu W G. O-GlcNAcylation of SIRT1 enhances its deacetylase activity and promotes cytoprotection under stress[J]. Nature Communications, 2017, 8(1):1491. doi:10.1038/s41467-017-01654-6. [23] Qiu X L, Brown K, Hirschey M D, Verdin E,Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation[J]. Cell Metabolism, 2010, 12(6):662-667. doi:10.1016/j.cmet.2010.11.015. [24] Pavlová S, Klucska K, Vaší ek D, Ryban L, Harrath A H, Alwasel S H, Sirotkin A V. The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function[J]. Animal Reproduction Science, 2013, 140(3-4):180-188. doi:10.1016/j.anireprosci.2013.06.013. [25] Morita Y, Wada-Hiraike O, Yano T, Shirane A, Hirano M, Hiraike H, Koyama S, Oishi H, Yoshino O, Miyamoto Y, Sone K, Oda K, Nakagawa S, Tsutsui K, Taketani Y. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells:an implicative role of SIRT1 in the ovary[J]. Reproductive Biology and Endocrinology,2012,10:14. doi:10.1186/1477-7827-10-14. [26] Ding R B, Bao J L, Deng C X. Emerging roles of SIRT1 in fatty liver diseases[J]. International Journal of Biological Sciences, 2017,13(7):852-867. doi:10.7150/ijbs.19370. [27] Hao S L, Ni F D, Yang W X. The dynamics and regulation of chromatin remodeling during spermiogenesis[J]. Gene,2019,706:201-210. doi:10.1016/j.gene.2019.05.027. [28] Mäkelä J A, Koskenniemi J J, Virtanen H E, Toppari J. Testis development[J]. Endocrine Reviews,2019,40(4):857-905. doi:10.1210/er.2018-00140. |