| [1] |
|
|
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production[J]. Crops, 2018(4):1-7.
|
| [2] |
Abhinandan K, Skori L, Stanic M, Hickerson N M N, Jamshed M, Samuel M A. Abiotic stress signaling in wheat-an inclusive overview of hormonal interactions during abiotic stress responses in wheat[J]. Frontiers in Plant Science, 2018, 9:734. doi: 10.3389/fpls.2018.00734.
pmid: 29942321
|
| [3] |
茹京娜, 郝冰清, 冀晓倩, 杨佳乐, 王红涛, 权宝全, 郭鹏燕, 赵吉平, 徐兆师. 小麦非生物胁迫响应研究进展[J]. 山西农业科学, 2025, 53(2):45-56. doi: 10.3969/j.issn.1002-2481.2025.02.07.
|
|
Ru J N, Hao B Q, Ji X Q, Yang J L, Wang H T, Quan B Q, Guo P Y, Zhao J P, Xu Z S. Research progress of abiotic stress responses in wheat[J]. Journal of Shanxi Agricultural Sciences, 2025, 53(2):45-56.
|
| [4] |
|
|
Zhang W Y, Qian X Y, Li Y Y, Xu Y J, Wang Z Q, Yang J C. Effect of soil drought on the physiological traits and grain yield of wheat[J]. Journal of Triticeae Crops, 2016, 36(4):491-500.
|
| [5] |
Radpour E, Salimi A, Fatehi F, Maleki M. Biochemical,physiological changes and gene expression responses of wild wheat by Aegilops tauschii coss to drought stress[J]. Plant Physiology and Biochemistry, 2025, 229:110558. doi: 10.1016/j.plaphy.2025.110558.
URL
|
| [6] |
|
|
Hu C D, Liu R H, Wang X P, Liu Z Y, Li T X. Effects of drought stress on photosynthetic,osmotic adjustment substance and antioxidase activities of winter wheat level[J]. Chinese Journal of Agrometeorology, 2015, 36(5):602-610.
|
| [7] |
张振旺, 吴金芝, 黄明, 李友军, 赵凯男, 侯园泉, 赵志明, 杨中帅. 干旱胁迫对不同抗旱性冬小麦灌浆期下午旗叶光合特性和籽粒产量的影响[J]. 华北农学报, 2022, 37(2):67-77. doi: 10.7668/hbnxb.20192526.
|
|
Zhang Z W, Wu J Z, Huang M, Li Y J, Zhao K N, Hou Y Q, Zhao Z M, Yang Z S. Effects of drought stress on the photosynthetic characteristics in flag leaf in the afternoon during the grain filling stage and grain yield of winter wheat with different drought resistance[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2):67-77.
doi: 10.7668/hbnxb.20192526
|
| [8] |
|
|
Lyu L J, Liu S X, Chen X Y, Zhao A J, Sun L J, Li H. Nutrient accumulation dynamics of different types of wheat during grain filling stage under drought stress[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2):89-98.
doi: 10.7668/hbnxb.20191708
|
| [9] |
黄明, 姜沛沛, 张振旺, 吴金芝, 李友军. 干旱和品种对小麦灌浆期旗叶下午光合速率、关键酶活性和产量的影响[J]. 华北农学报, 2024, 39(2):90-98. doi: 10.7668/hbnxb.20194550.
|
|
Huang M, Jiang P P, Zhang Z W, Wu J Z, Li Y J. Effects of drought and cultivars on net photosynthetic rate,key photosynthetic enzymes activities in flag leaves in the afternoon during grain filling stage and grain yield of wheat[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(2):90-98.
doi: 10.7668/hbnxb.20194550
|
| [10] |
|
|
Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress[J]. Chinese Journal of Applied Ecology, 2012, 23(3):724-730.
|
| [11] |
|
|
Yang Y H, Ma X, Zhang Z S, Guo J, Li Y N, Liang Y, Song J M, Zhao S J. Effects of drought stress on photosynthetic characteristics of wheat near-isogenic lines with different wax contents[J]. Scientia Agricultura Sinica, 2018, 51(22):4241-4251.
doi: 10.3864/j.issn.0578-1752.2018.22.003
|
| [12] |
Wang M, Li C N, Wang J Y, Li Y Y, Zhang Y F, Yang L L, Zhang Y N, Zhang J, Zhang Z H, Yan W, Zuo Y A, Zhao Q C, Li L, Mao X G, Jing R L. A raf-like MAPKKK gene TaHT1 controls drought tolerance and primary root length in wheat[J]. Plant,Cell & Environment, 2025, 48(9):6524-6536. doi: 10.1111/pce.15624.
URL
|
| [13] |
Liu Y, Yu T F, Li Y T, Zheng L, Lu Z W, Zhou Y B, Chen J, Chen M, Zhang J P, Sun G Z, Cao X Y, Liu Y W, Ma Y Z, Xu Z S. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilising TaPYL4 receptor in wheat[J]. New Phytologist, 2022, 236(1):114-131. doi: 10.1111/nph.18326.
URL
|
| [14] |
Zhang L L, Zheng Y, Xiong X X, Li H, Zhang X, Song Y L, Zhang X H, Min D H. The wheat VQ motif-containing protein TaVQ4-D positively regulates drought tolerance in transgenic plants[J]. Journal of Experimental Botany, 2023, 74(18):5591-5605. doi: 10.1093/jxb/erad280.
pmid: 37471263
|
| [15] |
Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L, Bloom R E, Bodde S, Jones J D G, Schroeder J I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. The EMBO Journal, 2003, 22(11):2623-2633. doi: 10.1093/emboj/cdg277.
URL
|
| [16] |
Bhanbhro N, Wang H J, Bakhsh Q, Basit M F, Song W T, Ullah U, Shi S, Gao S, Shalmani A, Zhang R X, Chen K M. TaSnRK2.1-2D contributes to drought tolerance by modulating ROS production in wheat[J]. Plant,Cell & Environment, 2025:6440-6443. doi: 10.1111/pce.15609.
|
| [17] |
Zhang Y F, Wang J Y, Li Y Y, Zhang Z H, Yang L L, Wang M, Zhang Y N, Zhang J, Li C N, Li L, Reynolds M P, Jing R L, Wang C Y, Mao X G. Wheat TaSnRK2.10 phosphorylates TaERD15 and TaENO1 and confers drought tolerance when overexpressed in rice[J]. Plant Physiology, 2023, 191(2):1344-1364. doi: 10.1093/plphys/kiac523.
URL
|
| [18] |
Wang B X, Li L Q, Liu M L, Peng D, Wei A S, Hou B Y, Lei Y H, Li X J. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis,ABA responses,and ROS scavenging in transgenic wheat[J]. The Plant Journal, 2022, 112(3):722-737. doi: 10.1111/tpj.15975.
URL
|
| [19] |
冯佰利, 高小丽, 王长发, 张嵩午, 李生秀. 干旱条件下不同温型小麦叶片衰老与活性氧代谢特性的研究[J]. 中国生态农业学报, 2005, 13(4):74-76.
|
|
Feng B L, Gao X L, Wang C F, Zhang S W, Li S X. Leaf senescence and active oxygen metabolism of different-type wheats under drought[J]. Chinese Journal of Eco-Agriculture, 2005, 13(4):74-76.
|
| [20] |
He G H, Xu J Y, Wang Y X, Liu J M, Li P S, Chen M, Ma Y Z, Xu Z S. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. BMC Plant Biology, 2016, 16(1):116. doi: 10.1186/s12870-016-0806-4.
URL
|
| [21] |
张喆慧, 王昕, 金可默, 程凌云, 王宝兰, 申建波. 一氧化氮在植物发育及植物-微生物互作中的作用机制研究进展[J]. 植物营养与肥料学报, 2021, 27(4):706-718. doi: 10.11674/zwyf.20305.
|
|
Zhang Z H, Wang X, Jin K M, Cheng L Y, Wang B L, Shen J B. Advances in studies on the role of nitric oxide in plant development and plant-microbial interactions[J]. Plant Nutrition and Fertilizer Science, 2021, 27(4):706-718.
|
| [22] |
|
|
Wang B, Chen M D, Lin L, Ye X R, Zhu H S, Wen Q F. Signal pathways and related transcription factors of drought stress in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10):1792-1806.
|
| [23] |
Yao T, Zhang J, Xie M, Yuan G L, Tschaplinski T J, Muchero W, Chen J G. Transcriptional regulation of drought response in Arabidopsis and woody plants[J]. Frontiers in Plant Science, 2021, 11:572137. doi: 10.3389/fpls.2020.572137.
URL
|
| [24] |
Singh D, Laxmi A. Transcriptional regulation of drought response:a tortuous network of transcriptional factors[J]. Frontiers in Plant Science, 2015, 6:895. doi: 10.3389/fpls.2015.00895.
|
| [25] |
Zhou Y X, Wang D Z, Wang H, Qiao Y Z, Zhao P, Cao Y, Liu X M, Yang Y M, Lin X L, Xu S B, Dong B D, Xiao J. Integrative omics of the genetic basis for wheat WUE and drought resilience reveal the function of TaMYB7-A1[J]. Nature Communications, 2025,16:8622. doi: 10.1038/s41467-025-63642-5.
|
| [26] |
Mao H D, Li S M, Chen B, Jian C, Mei F M, Zhang Y F, Li F F, Chen N, Li T, Du L Y, Ding L, Wang Z X, Cheng X X, Wang X J, Kang Z S. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat[J]. Molecular Plant, 2022, 15(2):276-292. doi: 10.1016/j.molp.2021.11.007.
URL
|
| [27] |
Ge M M, Tang Y, Guan Y J, Lyu M C, Zhou C, Ma H L, Lyu J Y. TaWRKY31,a novel WRKY transcription factor in wheat,participates in regulation of plant drought stress tolerance[J]. BMC Plant Biology, 2024, 24(1):27. doi: 10.1186/s12870-023-04709-7.
|
| [28] |
Yang W, Li R H, Feng M, Qin Z, Zhang Y M, Peng H R, Yao Y Y, Hu Z R, Ni Z F, Song W, Qin F, Takahashi F, Sun Q X, Xin M M. The TaCEP15 peptide signaling cascade modulates primary root length and drought tolerance in wheat[J]. Science Advances, 2025, 11(36):eady1949. doi: 10.1126/sciadv.ady1949.
|
| [29] |
Hou Z H, Zheng W J, Zheng L, Wang J Y, Zhang S X, Wei J T, Yang S H, Jiao Y C, Cheng W J, Yu T F, Ma X F, Ru J N, Liu Y W, Cao X Y, Chen J, Zhou Y B, Chen M, Li L H, Ma Y Z, Nie X J, Xu Z S. TaPPR13,a pentatricopeptide repeat protein gene activated by TaBZR2,confers drought stress tolerance by enhancing the antioxidant defense system and promoting retrograde signaling in wheat ( Triticum aestivum)[J]. Advanced Science, 2025, 12(36):e02984. doi: 10.1002/advs.202502984.
URL
|
| [30] |
Chen B, Liu Y L, Yang Y Y, Wang Q N, Li S M, Li F F, Du L Y, Zhang P Y, Wang X M, Zhang S X, Zhang X K, Kang Z S, Wang X J, Mao H D. A system genetics analysis uncovers the regulatory variants controlling drought response in wheat[J]. Plant Biotechnology Journal, 2025, 23(5):1565-1584. doi: 10.1111/pbi.14605.
pmid: 39977251
|
| [31] |
|
|
Long J Y, Guo L J, Kong B X, Wang J F, Chen T, Yang D L. Identification of TaRPL36 gene family in wheat and development of functional markers for drought-response gene TaRPL36-8[J]. Journal of Yunnan Agricultural University (Natural Science), 2025, 40(5):1-13.
|
| [32] |
Liu Y L, Chen B, Qin Z, Jiang P, Yang Y Y, Wang C, Xing T F, Li F F, Du L Y, Li S M, Zhang X K, Nie X J, Kang Z S, Mao H D. TaFAR5-TaFAR3 module regulates cuticular wax biosynthesis and drought tolerance in wheat[J]. New Phytologist, 2025, 248(4):1802-1821. doi: 10.1111/nph.70512.
pmid: 40887879
|
| [33] |
Hou X Y, Zhang Y L, Shi X X, Duan W R, Fu X J, Liu J Z, Xiao K. TaCDPK1-5A positively regulates drought response through modulating osmotic stress responsive-associated processes in wheat ( Triticum aestivum)[J]. Plant Cell Reports, 2024, 43(11):256. doi: 10.1007/s00299-024-03344-2.
|
| [34] |
|
|
Jing J J, Zhang Y, Bai Z Y, Li C D. Effects of salt stress on protective enzyme activities and chromosome of wheat substitution lines[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(5):134-138.
|
| [35] |
|
|
Meng X H, Lin Q, Zhang Y M, Li L Y, Jiang W, Liu Y G. Effect of salt stress on germination of wheat and screening of salt tolerance indices[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(4):175-180.
|
| [36] |
郭伟, 于立河. 腐植酸浸种对盐胁迫下小麦萌发种子及幼苗生理特性的影响[J]. 麦类作物学报, 2012, 32(1):90-96.
|
|
Guo W, Yu L H. Effect of seed soaking with humic acid on soluble sugar accumulation and allocation in germinated wheat seed under salt stress[J]. Journal of Triticeae Crops, 2012, 32(1):90-96.
|
| [37] |
|
|
Wang M E, Chen M, Lang Y Z, Cao X L, Zhang P, Yuan X M, Zhao T F. Effects of salt stress on photosynthetic production and yield of wheat[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(4):727-733.
|
| [38] |
|
|
Zhu X G, Wang Q, Zhang Q D, Lu C M, Kuang T Y. Response of photosynthetic functions of winter wheat to salt stress[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2):177-180.
|
| [39] |
王大江, 刘昭, 路翔, 高源, 孙思邈, 郭含欣, 田雯, 王霖, 李子琛, 李连文, 王昆, 刘继红. 植物耐盐机制研究进展及展望[J]. 华北农学报, 2024, 39(5):80-92. doi: 10.7668/hbnxb.20195207.
|
|
Wang D J, Liu Z, Lu X, Gao Y, Sun S M, Guo H X, Tian W, Wang L, Li Z C, Li L W, Wang K, Liu J H. Advances and prospect on mechanism of salt tolerance in plants[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(5):80-92.
doi: 10.7668/hbnxb.20195207
|
| [40] |
|
|
Zhao C. Study on content change of osmoregulation substance in wheat at seedling stage under salt stress[J]. Journal of Anhui Agricultural Sciences, 2009, 37(24):11473-11474.
|
| [41] |
Yadav N S, Shukla P S, Jha A, Agarwal P K, Jha B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na + loading in xylem and confers salt tolerance in transgenic tobacco[J]. BMC Plant Biology, 2012, 12(1):188. doi: 10.1186/1471-2229-12-188.
|
| [42] |
Jiang W, Pan R, Buitrago S, Wu C, Abou-Elwafa S F, Xu Y H, Zhang W Y. Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat ( Triticum aestivum L.)[J]. Physiology and Molecular Biology of Plants, 2021, 27(6):1245-1260. doi: 10.1007/s12298-021-01009-y.
pmid: 34177146
|
| [43] |
Sharma P, Mishra S, Pandey B, Singh G. Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat ( Triticum aestivum L.)[J]. Frontiers in Plant Science, 2023, 14:1266699. doi: 10.3389/fpls.2023.1266699.
URL
|
| [44] |
Coskun D. SPOTLIGHT:TaSPL6-D,a transcriptional repressor of TaHKT1;5-D in bread wheat ( Triticum aestivum L.) and a novel target for improving salt tolerance in crops[J]. Journal of Plant Physiology, 2024, 303:154351. doi: 10.1016/j.jplph.2024.154351.
URL
|
| [45] |
Li K L, Xue H, Tang R J, Luan S. A calcium sensor kinase pathway interacts with the TOR complex to balance growth and salt tolerance in Arabidopsis[J]. The Plant Cell, 2025, 37(7):koaf103. doi: 10.1093/plcell/koaf103.
|
| [46] |
Ishu, Shumayla, Madhu, Upadhyay S K. Complementation with TaNCL2-a reinstates growth and abiotic stress response in atncl mutant of Arabidopsis[J]. Plant Science, 2025, 353:112411. doi: 10.1016/j.plantsci.2025.112411.
URL
|
| [47] |
Lindberg S, Premkumar A. Ion changes and signaling under salt stress in wheat and other important crops[J]. Plants, 2023, 13(1):46. doi: 10.3390/plants13010046.
URL
|
| [48] |
Li P C, Ma X L, Wang J C, Yao L R, Li B C, Meng Y X, Si E J, Yang K, Shang X W, Zhang X Y, Wang H J. Integrated analysis of metabolome and transcriptome reveals insights for low phosphorus tolerance in wheat seedling[J]. International Journal of Molecular Sciences, 2023, 24(19):14840. doi: 10.3390/ijms241914840.
URL
|
| [49] |
Zou Z Y, Khan A, Khan A, Tao Z Y, Zhang S, Long Q T, Lin J F, Luo S S. Activation of ABA signaling pathway and up-regulation of salt-responsive genes confer salt stress tolerance of wheat ( Triticum aestivum L.) seedlings[J]. Agronomy, 2024, 14(9):2095. doi: 10.3390/agronomy14092095.
|
| [50] |
Gao L T, Jia S Z, Cao L, Ma Y J, Wang J L, Lan D, Guo G Y, Chai J F, Bi C L. An F-box protein from wheat,TaFBA-2A,negatively regulates JA biosynthesis and confers improved salt tolerance and increased JA responsiveness to transgenic rice plants[J]. Plant Physiology and Biochemistry, 2022, 182:227-239. doi: 10.1016/j.plaphy.2022.04.025.
URL
|
| [51] |
Wang K, Zhai M J, Cui D Z, Han R, Wang X L, Xu W J, Qi G, Zeng X X, Zhuang Y M, Liu C. Genome-wide analysis of the amino acid permeases gene family in wheat and TaAAP1 enhanced salt tolerance by accumulating ethylene[J]. International Journal of Molecular Sciences, 2023, 24(18):13800. doi: 10.3390/ijms241813800.
URL
|
| [52] |
Li L X, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray W M, Friml J. Cell surface and intracellular auxin signalling for H + fluxes in root growth[J]. Nature, 2021, 599(7884):273-277. doi: 10.1038/s41586-021-04037-6.
|
| [53] |
Liu J, Chen S B, Fan Z H, Liu H T, Chen Y L, Seth C S, Agathokleous E, Guo T C, Kang G Z, Li G Z. High-affinity potassium transporter TaHAK1 implicates in cesium tolerance and phytoremediation[J]. Journal of Hazardous Materials, 2024, 480:136070. doi: 10.1016/j.jhazmat.2024.136070.
URL
|
| [54] |
Sukumaran S, Lethin J, Liu X, Pelc J, Zeng P, Hassan S, Aronsson H. Genome-wide analysis of MYB transcription factors in the wheat genome and their roles in salt stress response[J]. Cells, 2023, 12(10):1431. doi: 10.3390/cells12101431.
URL
|
| [55] |
Yu Y A, Wu Y X, He L Y. A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant[J]. Plant Molecular Biology, 2023, 113(4/5):171-191. doi: 10.1007/s11103-023-01381-1.
|
| [56] |
Li S M, Zhang P Y, Wang X M, Feng W X, Zhu H Q, Qin Z, Chen B, Wang C, Nie X J, Kang Z S, Mao H D. TaGW2-TaVOZ1 module regulates wheat salt tolerance via both E3 ligase dependent and independent pathways[J]. Science Advances, 2025, 11(36):eadw3985. doi: 10.1126/sciadv.adw3985.
|
| [57] |
Zhou J, Li F, Wang J L, Ma Y, Chong K, Xu Y Y. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis[J]. Journal of Plant Physiology, 2009, 166(12):1296-1306. doi: 10.1016/j.jplph.2009.02.007.
URL
|
| [58] |
Lu Y F, Zhou R X, Zeng M, Xu K W, Teng L D, Zhou M X, Fan X Y, Cao F B. An anthocyanin acyltransferase TaMAT1a-2B mediates salt tolerance by regulating anthocyanin acylation in wheat[J]. Cell Reports, 2025, 44(9):116205. doi: 10.1016/j.celrep.2025.116205.
URL
|
| [59] |
Wang W L, Chi M H, Liu S P, Zhang Y, Song J W, Xia G M, Liu S W. TaGPAT6 enhances salt tolerance in wheat by synthesizing cutin and suberin monomers to form a diffusion barrier[J]. Journal of Integrative Plant Biology, 2025, 67(2):208-225. doi: 10.1111/jipb.13808.
|
| [60] |
Tang B Z, Feng L, Hulin M T, Ding P T, Ma W B. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics[J]. Cell Host & Microbe, 2023, 31(10):1732-1747.e5. doi: 10.1016/j.chom.2023.08.019.
|
| [61] |
|
|
Zhang Y H, Yang Y M, Cao L, Hao Y F, Huang J, Li J P, Yao D X, Wang Z M. Effect of high temperature on photosynthetic capability and antioxidant en-zyme activity of flag leaf and non-leaf organs in wheat[J]. Acta Agronomica Sinica, 2015, 41(1):136-144.
doi: 10.3724/SP.J.1006.2015.00136
URL
|
| [62] |
|
|
Zhang H L. Effects of high temperature stress on photosynthesis of different heat-resistant wheat varieties[D]. Jinan: Shandong Agricultural University, 2015.
|
| [63] |
Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures:a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2):245-251. doi: 10.1023/A:1002756311146.
URL
|
| [64] |
|
|
Zheng F, Shao Y H, He Z P. The effects of high-temperature stress on the component of the phloem exudates of flag leaf and peduncle of winter wheat[J]. Acta Agriculturae Boreali-Sinica, 2003, 18(3):12-14.
doi: 10.3321/j.issn:1000-7091.2003.03.004
|
| [65] |
Sihag P, Kumar U, Sagwal V, Kapoor P, Singh Y, Mehla S, Balyan P, Mir R R, Varshney R K, Singh K P, Dhankher O P. Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat ( Triticum aestivum L.)[J]. The Plant Genome, 2024, 17(1):e20307. doi: 10.1002/tpg2.20307.
URL
|
| [66] |
李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4):1077-1090. doi: 10.3724/SP.J.1006.2025.41035.
|
|
Li Q, Ye Y C, Chang X H, Wang D M, Wang Y J, Yang Y S, Ma R Q, Zhao G C, Cai R G, Zhang M, Liu X W. Effects of high temperature and drought stresses on photosynthetic characte-ristics and yield of winter wheat after anthesis[J]. Acta Agronomica Sinica, 2025, 51(4):1077-1090.
doi: 10.3724/SP.J.1006.2025.41035
URL
|
| [67] |
|
|
Fu X Y, He M Q, Shi Z L, Zhao Y K, Wang X T, Guo J K. Effect of high temperature stress during grain-filling period on wheat grain-filling characteristics and quality[J]. Journal of Triticeae Crops, 2015, 35(6):867-872.
|
| [68] |
|
|
Yin Y Y, Liu J, Zheng B S, Yan D L. Research progress of abscisic acid in regulating plant abiotic stress[J]. Journal of Nuclear Agricultural Sciences, 2025, 39(9):1916-1927.
doi: 10.11869/j.issn.1000-8551.2025.09.1916
|
| [69] |
Hao X Y, Yu T F, Peng C J, Fu Y H, Fang Y H, Li Y, Xu Z S, Chen J, Dong H B, Ma Y Z, Xu W G. Somatic embryogenetic receptor kinase TaSERL2 regulates heat stress tolerance in wheat by influencing TaBZR2 protein stability and transcriptional activity[J]. Plant Biotechnology Journal, 2025, 23(7):2537-2553. doi: 10.1111/pbi.70045.
URL
|
| [70] |
Tian X J, Wang F, Zhao Y, Lan T Y, Yu K H, Zhang L Y, Qin Z, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Rossi V, Peng H R, Xin M M. Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway[J]. Plant Biotechnology Journal, 2020, 18(5):1109-1111. doi: 10.1111/pbi.13268.
URL
|
| [71] |
|
|
Guo X L, Liu Z H, Zhao H W, Xu J, Li H C. Gene expression of heat-shock proteins and antioxidant enzymes under heat acclimation and heat stress in winter wheat[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(4):13-18.
|
| [72] |
郭秀林, 戚润思, 孟祥照, 张华宁, 马贞玉, 段硕楠, 李国良, 刘子会, 尚忠林. 植物热激转录因子研究进展与展望[J]. 华北农学报, 2025, 40(1):1-13. doi: 10.7668/hbnxb.20195677.
|
|
Guo X L, Qi R S, Meng X Z, Zhang H N, Ma Z Y, Duan S N, Li G L, Liu Z H, Shang Z L. Research progress and prospect of plant heat shock transcription factor[J]. Acta Agriculturae Boreali-Sinica, 2025, 40(1):1-13.
doi: 10.7668/hbnxb.20195677
|
| [73] |
Wei J T, Zheng L, Ma X J, Yu T F, Gao X, Hou Z H, Liu Y W, Cao X Y, Chen J, Zhou Y B, Chen M, Jiang Q Y, Ma Y Z, Zheng W J, Xu Z S. An ABF5b-HsfA2h/HsfC2a-NCED2b/POD4/HSP26 module integrates multiple signaling pathway to modulate heat stress tolerance in wheat[J]. Plant Biotechnology Journal, 2025, 23(11):4735-4751. doi: 10.1111/pbi.70164.
URL
|
| [74] |
Yu H J, Lan T Y, Mao W W, Wang Y F, Zhang X Y, Ma M S, Chen S, Chen G, Li Q, Hu Z R, Xin M M, Yao Y Y, Guo W L, Ni Z F, Sun Q X, Peng H R. Natural variation in TaFAD8-D promoter enhances thermotolerance in wheat through fatty acid and lipid remodelling[J]. Plant Biotechnology Journal, 2025:pbi. 70397. doi: 10.1111/pbi.70397.
|
| [75] |
Zhao Y, Tian X J, Wang F, Zhang L Y, Xin M M, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Peng H R. Characterization of wheat MYB genes responsive to high temperatures[J]. BMC Plant Biology, 2017, 17(1):208. doi: 10.1186/s12870-017-1158-4.
pmid: 29157199
|
| [76] |
Wang J, Gao X, Dong J, Tian X Y, Wang J Z, Palta J A, Xu S B, Fang Y, Wang Z H. Over-expression of the heat-responsive wheat gene TaHSP23.9 in transgenic Arabidopsis conferred tolerance to heat and salt stress[J]. Frontiers in Plant Science, 2020, 11:243. doi: 10.3389/fpls.2020.00243.
pmid: 32211001
|
| [77] |
Kim J H. Multifaceted chromatin structure and transcription changes in plant stress response[J]. International Journal of Molecular Sciences, 2021, 22(4):2013. doi: 10.3390/ijms22042013.
|
| [78] |
Lin J C, Song N, Liu D B, Liu X B, Chu W, Li J P, Chang S M, Liu Z H, Chen Y M, Yang Q, Liu X Y, Yao Y Y, Guo W L, Xin M M, Peng H R, Ni Z F, Sun Q X, Hu Z R. Histone acetyltransferase TaHAG1 interacts with TaNACL to promote heat stress tolerance in wheat[J]. Plant Biotechnology Journal, 2022, 20(9):1645-1647. doi: 10.1111/pbi.13881.
URL
|
| [79] |
Lee S C, Adams D W, Ipsaro J J, Cahn J, Lynn J, Kim H S, Berube B, Major V, Calarco J P, LeBlanc C, Bhattacharjee S, Ramu U, Grimanelli D, Jacob Y, Voigt P, Joshua-Tor L, Martienssen R A. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation[J]. Cell, 2023, 186(19):4100-4116.e15. doi: 10.1016/j.cell.2023.08.001.
pmid: 37643610
|
| [80] |
Cao J, Qin Z, Cui G X, Chen Z Y, Cheng X J, Peng H R, Yao Y Y, Hu Z R, Guo W L, Ni Z F, Sun Q X, Xin M M. Natural variation of STKc_GSK3 kinase TaSG-D1 contributes to heat stress tolerance in Indian dwarf wheat[J]. Nature Communications, 2024,15:2097. doi: 10.1038/s41467-024-46419-0.
|
| [81] |
Tian X J, Qin Z, Zhao Y, Wen J J, Lan T Y, Zhang L Y, Wang F, Qin D D, Yu K H, Zhao A J, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, De Smet I, Peng H R, Xin M M. Stress granule-associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat ( Triticum aestivum)[J]. New Phytologist, 2022, 233(4):1719-1731. doi: 10.1111/nph.17865.
URL
|
| [82] |
Li H R, Qin Z, Geng X L, Cao J, Yuan X Y, Peng H R, Yao Y Y, Hu Z R, Guo W L, Zhang Y M, Liu J, Rossi V, De Smet I, Ni Z F, Sun Q X, Xin M M. TaIRE1-mediated unconventional splicing of the TabZIP60 mRNA and the miR172 precursor regulates heat stress tolerance in wheat[J]. Journal of Integrative Plant Biology, 2025, 67(9):2388-2400. doi: 10.1111/jipb.13963.
URL
|
| [83] |
Zang X S, Geng X L, Liu K L, Wang F, Liu Z S, Zhang L Y, Zhao Y, Tian X J, Hu Z R, Yao Y Y, Ni Z F, Xin M M, Sun Q X, Peng H R. Ectopic expression of TaOEP16-2-5B,a wheat plastid outer envelope protein gene,enhances heat and drought stress tolerance in transgenic Arabidopsis plants[J]. Plant Science, 2017, 258:1-11. doi: 10.1016/j.plantsci.2017.01.011.
URL
|
| [84] |
Li Q X, Wang W Q, Wang W L, Zhang G Q, Liu Y, Wang Y, Wang W. Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress[J]. Frontiers in Plant Science, 2018, 9:521. doi: 10.3389/fpls.2018.00521.
URL
|
| [85] |
张军, 孙树贵, 王亮明, 王秀娟, 杨群会, 陈新宏. 孕穗期低温对冬小麦生理生化特性和产量的影响[J]. 西北植物学报, 2013, 33(11):2249-2256.
|
|
Zhang J, Sun S G, Wang L M, Wang X J, Yang Q H, Chen X H. Physiological and biochemical characteristics and grain yield of winter wheat under low temperature at booting stage[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(11):2249-2256.
|
| [86] |
杨朝伟, 孙伟红, 任伟, 王丹, 安明珠, 耿飞龙, 王显国. 抗寒锻炼期和返青期黑麦对低温的生理响应机制[J]. 华北农学报, 2024, 39(3):104-113. doi: 10.7668/hbnxb.20194655.
|
|
Yang C W, Sun W H, Ren W, Wang D, An M Z, Geng F L, Wang X G. Physiological response mechanism of rye to low temperature during cold hardening and rejuvenation period[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(3):104-113.
doi: 10.7668/hbnxb.20194655
|
| [87] |
张自阳, 王智煜, 王斌, 王志伟, 朱启迪, 霍云风, 茹振钢, 刘明久. 春季穗分化阶段低温处理对不同小麦品种幼穗结实性及生理特性的影响[J]. 华北农学报, 2019, 34(4):130-139. doi: 10.7668/hbnxb.20190321.
|
|
Zhang Z Y, Wang Z Y, Wang B, Wang Z W, Zhu Q D, Huo Y F, Ru Z G, Liu M J. Effects of low temperature treatment at spring spike differentiation stage on young ear fruiting and physiological characteristics of different wheat varieties[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4):130-139.
doi: 10.7668/hbnxb.20190321
|
| [88] |
孙蕊, 林奇, 王晓楠, 付连双, 孙莹璐, 李卓夫. 低温下寒地冬小麦抗氧化生理指标的比较分析[J]. 中国农学通报, 2015, 31(12):1-5.
doi: 10.11924/j.issn.1000-6850.casb14100028
|
|
Sun R, Lin Q, Wang X N, Fu L S, Sun Y L, Li Z F. Comparative analysis of anti oxidative physiological indices on winter wheat in frigid region[J]. Chinese Agricultural Science Bulletin, 2015, 31(12):1-5.
doi: 10.11924/j.issn.1000-6850.casb14100028
|
| [89] |
|
|
Li X W, Li L, Lin Y Y, Zhou Q Y, Li X W, Yao T Z, Chen H M. The responses of chloroplasts of plant cells to cold[J]. Biotechnology Bulletin, 2016, 32(9):1-6.
|
| [90] |
|
|
Yi Y, Zhang Y L, Guo Z F, Bai L P, Qiao X, Hou L B. Physiological responses of winter wheat’s leaves to low temperature stress[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(1):144-148.
|
| [91] |
Wang R, Yu M M, Xia J Q, Xing J P, Fan X P, Xu Q H, Cang J, Zhang D. Overexpression of TaMYC2 confers freeze tolerance by ICE-CBF-COR module in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2022, 13:1042889. doi: 10.3389/fpls.2022.1042889.
URL
|
| [92] |
Yu M M, Wang R, Xia J Q, Li C, Xu Q H, Cang J, Wang Y Y, Zhang D. JA-induced TaMPK6 enhanced the freeze tolerance of Arabidopsis thaliana through regulation of ICE-CBF-COR module and antioxidant enzyme system[J]. Plant Science, 2023, 329:111621. doi: 10.1016/j.plantsci.2023.111621.
URL
|
| [93] |
王冰, 程宪国. 干旱、高盐及低温胁迫下植物生理及转录因子的应答调控[J]. 植物营养与肥料学报, 2017, 23(6):1565-1574. doi: 10.11674/zwyf.17312.
|
|
Wang B, Cheng X G. Physiological responses and regulatory pathways of transcription factors in plants under drought,high-salt,and low temperature stresses[J]. Plant Nutrition and Fertilizer Science, 2017, 23(6):1565-1574.
|
| [94] |
Chu W, Chang S M, Lin J C, Zhang C J, Li J P, Liu X B, Liu Z H, Liu D B, Yang Q, Zhao D Y, Liu X Y, Guo W L, Xin M M, Yao Y Y, Peng H R, Xie C J, Ni Z F, Sun Q X, Hu Z R. Methyltransferase TaSAMT1 mediates wheat freezing tolerance by integrating brassinosteroid and salicylic acid signaling[J]. The Plant Cell, 2024, 36(7):2607-2628. doi: 10.1093/plcell/koae100.
URL
|
| [95] |
Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs[J]. Molecular Genetics and Genomics, 2007, 277(5):533-554. doi: 10.1007/s00438-006-0206-9.
pmid: 17285309
|
| [96] |
Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, Vágújfalvi A. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance[J]. Journal of Experimental Botany, 2013, 64(7):1849-1862. doi: 10.1093/jxb/ert050.
pmid: 23567863
|
| [97] |
|
|
Qiao Q, Lin P, Cao S X, Ji J. Research progress and prospect of wheat vernalization[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(S1):45-52.
doi: 10.7668/hbnxb.20195114
|
| [98] |
Dhillon T, Pearce S P, Stockinger E J, Distelfeld A, Li C X, Knox A K, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J. Regulation of freezing tolerance and flowering in temperate cereals:the VRN-1 connection[J]. Plant Physiology, 2010, 153(4):1846-1858. doi: 10.1104/pp.110.159079.
pmid: 20571115
|
| [99] |
Liu F F, Cao W X, Zhang Q Q, Li Y, Zhou H, Wan Y X. Winter wheat vernalization alleles and freezing tolerance at the seedling and jointing stages[J]. Plants, 2025, 14(9):1350. doi: 10.3390/plants14091350.
URL
|
| [100] |
Zeng X L, Gao Z, Gu J B, Qin G C, Ou Y, Gao Z X, Wang P C, He Y H. CK2 kinase PRC2 signalling regulates genome-wide H3K27 trimethylation and transduces prolonged cold exposure into epigenetic cold memory in plants[J]. Nature Plants, 2025, 11(8):1572-1590. doi: 10.1038/s41477-025-02054-1.
|
| [101] |
张自阳, 王斌, 王智煜, 王志伟, 朱启迪, 茹振钢, 刘明久. 雌雄蕊原基分化期低温胁迫下2个小麦品种幼穗miRNA表达谱分析[J]. 华北农学报, 2021, 36(1):81-94. doi: 10.7668/hbnxb.20191253.
|
|
Zhang Z Y, Wang B, Wang Z Y, Wang Z W, Zhu Q D, Ru Z G, Liu M J. Analysis of miRNA expression profile in young ear of two wheat varieties under low temperature stress at the female stamen primordium differentiation stage[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(1):81-94.
doi: 10.7668/hbnxb.20191253
|
| [102] |
Zhang N, Wang S S, Zhao S M, Chen D Y, Tian H Y, Li J, Zhang L R, Li S G, Liu L, Shi C N, Yu X D, Ren Y, Chen F. Global crotonylatome and GWAS revealed a TaSRT1-TaPGK model regulating wheat cold tolerance through mediating pyruvate[J]. Science Advances, 2023, 9(19):eadg1012. doi: 10.1126/sciadv.adg1012.
|
| [103] |
成春华, 陈涛, 张龙, 郭利建, 车卓, 马靖福, 杨德龙. 小麦耐低温关键调控途径解析及 TaGGCT18-6A基因功能验证[J]. 华北农学报, 2025, 40(5):1-11. doi: 10.7668/hbnxb.20195902.
|
|
Cheng C H, Chen T, Zhang L, Guo L J, Che Z, Ma J F, Yang D L. Dissection of key regulatory pathways for low-temperature tolerance and functional verification of TaGGCT18-6A gene in wheat[J]. Acta Agriculturae Boreali-Sinica, 2025, 40(5):1-11.
|
| [104] |
Liang Y, Xia J Q, Jiang Y S, Bao Y Z, Chen H C, Wang D J, Zhang D, Yu J, Cang J. Genome-wide identification and analysis of bZIP gene family and resistance of TaABI5 (TabZIP96) under freezing stress in wheat ( Triticum aestivum)[J]. International Journal of Molecular Sciences, 2022, 23(4):2351. doi: 10.3390/ijms23042351.
URL
|
| [105] |
Peng K K, Tian Y, Sun X Z, Song C H, Ren Z P, Bao Y Z, Xing J P, Li Y S, Xu Q H, Yu J, Zhang D, Cang J. Tae-miR399-UBC24 module enhances freezing tolerance in winter wheat via a CBF signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2021, 69(45):13398-13415. doi: 10.1021/acs.jafc.1c04316.
URL
|
| [106] |
Hou X Y, Ma C Y, Wang Z Y, Shi X X, Duan W R, Fu X X, Liu J Z, Guo C J, Xiao K. Transcription factor gene TaWRKY76 confers plants improved drought and salt tolerance through modulating stress defensive-associated processes in Triticum aestivum L.[J]. Plant Physiology and Biochemistry, 2024, 216:109147. doi: 10.1016/j.plaphy.2024.109147.
URL
|
| [107] |
Wang D Z, Zhang X X, Cao Y, Batool A, Xu Y X, Qiao Y Z, Li Y P, Wang H, Lin X L, Bie X M, Zhang X S, Jing R L, Dong B D, Tong Y P, Teng W, Liu X G, Xiao J. TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat[J]. Journal of Integrative Plant Biology, 2024, 66(7):1295-1312. doi: 10.1111/jipb.13670.
|
| [108] |
Li S N, Lin D X, Zhang Y W, Deng M, Chen Y X, Lv B, Li B S, Lei Y, Wang Y P, Zhao L, Liang Y T, Liu J X, Chen K L, Liu Z Y, Xiao J, Qiu J L, Gao C X. Genome-edited powdery mildew resistance in wheat without growth penalties[J]. Nature, 2022, 602(7897):455-460. doi: 10.1038/s41586-022-04395-9.
|