华北农学报 ›› 2025, Vol. 40 ›› Issue (S1): 40-53. doi: 10.7668/hbnxb.20196587

所属专题: 小麦 抗旱节水 生物技术

• 作物遗传育种·种质资源·生物技术 • 上一篇    下一篇

小麦非生物胁迫响应机制研究进展及抗逆育种展望

吉夏洁, 雷雅坤, 刘宁, 孙丽敏, 胡景辉   

  1. 河北省农林科学院 农业信息与经济研究所,河北 石家庄 050051
  • 收稿日期:2025-11-10 出版日期:2025-12-29
  • 通讯作者:
    胡景辉(1973-),男,河北清苑人,研究员,硕士,主要从事作物遗传育种研究。
  • 作者简介:

    吉夏洁(1992-),女,山西运城人,助理研究员,博士,主要从事小麦功能基因挖掘研究。

  • 基金资助:
    河北省农林科学院科技创新人才队伍建设项目(C24R1505); 河北省农林科学院科技创新人才队伍建设项目(C25R1503)

Research Progress on Wheat Abiotic Stress Response Mechanisms and Prospects for Stress-Resistant Breeding

JI Xiajie, LEI Yakun, LIU Ning, SUN Limin, HU Jinghui   

  1. Institute of Agricultural Information and Economics,Hebei Academy of Agriculture and Forestry Sciences,Shijiazhuang 050051,China
  • Received:2025-11-10 Published:2025-12-29

摘要:

小麦作为全球主要粮食作物之一,其生长发育、产量及品质常受非生物胁迫制约。为应对非生物胁迫,小麦进化出信号感知、信号传导及基因表达调控等一系列响应机制维持细胞稳态、保护生物大分子功能。干旱胁迫会导致小麦渗透调节物质与抗氧化物质积累、光合速率下降及形态结构改变,其分子机制主要包括活性氧(ROS)信号、激素信号及基因表达调控等途径。盐碱胁迫则会抑制种子萌发与幼苗生长,造成光合作用受阻、渗透调节失衡、离子平衡紊乱及膜脂氧化;小麦可通过激活盐超敏感(SOS)信号通路、钙离子信号、激素信号及基因表达调控来增强耐盐性。极端温度胁迫会抑制光合作用、引发膜脂氧化并促使渗透调节物质积累,其调控机制主要涉及激素信号、转录激活及表观遗传调控。本研究综述了小麦应对干旱、盐碱及极端温度胁迫的响应机制,并展望未来研究方向:聚焦多胁迫交叉互作机制,挖掘复合胁迫响应基因;将抗逆性状整合到高产优质遗传背景中,实现理想株型与抗逆性的协同改良;推动生物技术与常规育种方法深度融合,提升育种效率。旨在为小麦非生物胁迫抗性遗传改良提供理论支撑与技术参考。

关键词: 小麦, 非生物胁迫, 干旱, 盐碱, 高温, 低温, 分子机制

Abstract:

Wheat,as one of the world's major food crops,its growth and development,yield,and quality are often constrained by abiotic stresses. To cope with these abiotic stresses,wheat has evolved a series of response mechanisms,including signal perception,signal transduction,and gene expression regulation,to maintain cellular homeostasis and protect the functions of biological macromolecules. Drought stress causes the accumulation of osmotic-adjustment substances and antioxidants in wheat,a decline in the photosynthetic rate,and alterations in morphological structure. Its molecular mechanisms mainly involve pathways such as reactive oxygen species (ROS) signaling,hormone signaling,and gene expression regulation. Saline-alkali stress inhibits seed germination and seedling growth,leading to photosynthetic impairments,osmotic-regulation imbalances,ion-balance disorders,and membrane-lipid oxidation. Under such circumstances,wheat can enhance salt tolerance by activating the salt overly sensitive (SOS) signaling pathway,calcium-ion signaling,hormone signaling,and gene-expression regulation. Extreme temperature stress inhibits photosynthesis,triggers membrane-lipid oxidation,and promotes the accumulation of osmotic-adjustment substances. Its regulatory mechanisms mainly involve hormone signaling,transcriptional activation,and epigenetic regulation. This study reviews the response mechanisms of wheat to drought,saline-alkali,and extreme temperature stresses and looks ahead to future research directions:focusing on the cross-interaction mechanisms of multiple stresses and mining genes responsive to combined stresses; effectively integrating stress-resistant traits into high-yield and high-quality genetic backgrounds to achieve the coordinated improvement of ideal plant types and stress resistance; promoting the in-depth integration of modern biotechnology with conventional breeding methods to enhance breeding efficiency. It aims to provide comprehensive theoretical support and technical references for the genetic improvement of wheat's resistance to abiotic stresses.

Key words: Wheat, Abiotic stress, Drought, Saline-alkali, High temperature, Low temperature, Molecular mechanism

中图分类号: 

引用本文

吉夏洁, 雷雅坤, 刘宁, 孙丽敏, 胡景辉. 小麦非生物胁迫响应机制研究进展及抗逆育种展望[J]. 华北农学报, 2025, 40(S1): 40-53. doi: 10.7668/hbnxb.20196587.

JI Xiajie, LEI Yakun, LIU Ning, SUN Limin, HU Jinghui. Research Progress on Wheat Abiotic Stress Response Mechanisms and Prospects for Stress-Resistant Breeding[J]. Acta Agriculturae Boreali-Sinica, 2025, 40(S1): 40-53. doi: 10.7668/hbnxb.20196587.