[1] |
Mizuta D, Ban T, Miyajima I, Nakatsuka A, Kobayashi N. Comparison of flower color with anthocyanin composition patterns in evergreen Azalea[J]. Scientia Horticulturae, 2009, 122(4):594-602.doi: 10.1016/j.scienta.2009.06.027.
URL
|
[2] |
|
|
Xia X, Gong R, Zhang C Y. Anthocyanin composition and coloration mechanism in petals of Rhododen-dron pulchrum with different colors[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(1):207-213.
|
[3] |
|
|
He Y F, Zhang C Y, Liu Q L. Characterization of flower coloration in petals of Rhododendron simsii[J]. Journal of Agricultural Science and Technolog, 2021, 23(2):50-56.
|
[4] |
|
|
Wang Y, Zhang G H, He J S, Xu S S, Liu X Y, Ma C H, Zhang J L. Research progress of Rhododendron flower color[J]. World Forestry Research, 2020, 33(5):19-24.
|
[5] |
Li J B, Hashimoto F, Shimizu K, Sakata Y. Anthocyanins from red flowers of Camellia cultivar Dalicha[J]. Phytochemistr, 2008, 69(18):3166-3171.doi: 10.1016/j.phytochem.2008.03.014.
URL
|
[6] |
|
|
Xia X, Gong R, Feng S C, Zhang C Y. Types and quantitative analysis of anthocyanins in F1 hybrid among varieties in Rhododendron subgenus Tsutsusi[J]. Journal of Beijing Forestry Universit, 2022, 44(5):105-114.
|
[7] |
Du H, Lai L M, Wang F, Sun W B, Zhang L H, Li X H, Wang L S, Jiang L H, Zheng Y R. Characterisation of flower colouration in 30 Rhododendron species via anthocyanin and flavonol identification and quantitative traits[J]. Plant Biolog, 2018, 20(1):121-129.doi: 10.1111/plb.12649.
|
[8] |
Park N I, Xu H, Li X H, Jang I H, Park S, Ahn G H, Lim Y P, Kim S J, Park S U. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish ( Raphanus sativus)[J]. Journal of Agricultural and Food Chemistr, 2011, 59(11):6034-6039.doi: 10.1021/jf200824c.
|
[9] |
Li W F, Mao J, Yang S J, Guo Z G, Ma Z H, Dawuda M M, Zuo C W, Chu M Y, Chen B H. Anthocyanin accumulation correlates with hormones in the fruit skin of red delicious and its four generation bud sport mutants[J]. BMC Plant Biolog, 2018, 18(1):1-15.doi: 10.1186/s12870-018-1595-8.
|
[10] |
Li T C, Zhang W, Yang H Y, Dong Q, Ren J, Fan H H, Zhang X, Zhou Y B. Comparative transcriptome analysis reveals differentially expressed genes related to the tissue-specific accumulation of anthocyanins in pericarp and aleurone layer for maize[J]. Scientific Reports, 2019, 9(1):2485.doi: 10.1038/s41598-018-37697-y.
pmid: 30792433
|
[11] |
Jiang T, Zhang M D, Wen C X, Xie X L, Tian W, Wen S Q, Lu R K, Liu L D. Integrated metabolomic and transcriptomic analysis of the anthocyanin regulatory networks in Salvia miltiorrhiza Bge.flowers[J]. BMC Plant Biolog, 2020, 20(1):349.doi: 10.1186/s12870-020-02553-7.
|
[12] |
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments:anthocyanins,betalains and carotenoids[J]. The Plant Journal, 2008, 54(4):733-749.doi: 10.1111/j.1365-313x.2008.03447.x.
URL
|
[13] |
El-Sharkawy I, Liang D, Xu K N. Transcriptome analysis of an apple ( Malus×domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation[J]. Journal of Experimental Botan, 2015, 66(22):7359-7376.doi: 10.1093/jxb/erv433.
URL
|
[14] |
Yang F S, Nie S, Liu H, Shi T L, Tian X C, Zhou S S, Bao Y T, Jia K H, Guo J F, Zhao W, An N, Zhang R G, Yun Q Z, Wang X Z, Mannapperuma C, Porth I, El-Kassaby Y A, Street N R, Wang X R, Van de Peer Y, Mao J F. Chromosome-level genome assembly of a parent species of widely cultivated azaleas[J]. Nature Communications, 2020, 11(1):5269.doi: 10.1038/s41467-020-18771-4.
|
[15] |
Zipor G, Duarte P, Carqueijeiro I, Shahar L, Ovadia R, Teper-Bamnolker P, Eshel D, Levin Y, Doron-Faigenboim A, Sottomayor M, Oren-Shamir M. In planta anthocyanin degradation by a vacuolar class Ⅲ peroxidase in Brunfelsia calycina flowers[J]. New Phytologist, 2015, 205(2):653-665.doi: 10.1111/nph.13038.
pmid: 25256351
|
[16] |
Liu Y, Tikunov Y, Schouten R E, Marcelis L F M, Visser R G F, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables:a review[J]. Frontiers in Chemistr, 2018, 6:52.doi: 10.3389/fchem.2018.00052.
|
[17] |
Nakatsuka A, Mizuta D, Kii Y, Miyajima I, Kobayashi N. Isolation and expression analysis of flavonoid biosynthesis genes in evergreen Azalea[J]. Scientia Horticulturae, 2008, 118(4):314-320.doi: 10.1016/j.scienta.2008.06.016.
URL
|
[18] |
Ye L J, Möller M, Luo Y H, Zou J Y, Zheng W, Wang Y H, Liu J, Zhu A D, Hu J Y, Li D Z, Gao L M. Differential expressions of anthocyanin synthesis genes underlie flower color divergence in a sympatric Rhododendron sanguineum complex[J]. BMC Plant Biolog, 2021, 21(1):204.doi: 10.1186/s12870-021-02977-9.
|
[19] |
Huyen D T T, Ureshino K, Thanh Van D, Miyajima I. Co-pigmentation of anthocyanin-flavonol in the blotch area of Rhododendron simsii Planch.flowers[J]. The Horticulture Journal, 2016, 85(3):232-237.doi: 10.2503/hortj.mi-092.
URL
|
[20] |
Giusti M M, Rodríguez-Saona L E, Griffin D, Wrolstad R E. Electrospray and tandem mass spectroscopy as tools for anthocyanin characterization[J]. Journal of Agricultural and Food Chemistr, 1999, 47(11):4657-4664.doi: 10.1021/jf981242+.
|
[21] |
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT,StringTie and Ballgown[J]. Nature Protocols, 2016, 11(9):1650-1667.doi: 10.1038/nprot.2016.095.
|
[22] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biolog, 2014, 15(12):550.doi: 10.1186/s13059-014-0550-8.
|
[23] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10):2731-2739.doi: 10.1093/molbev/msr121.
URL
|
[24] |
Xiao Z, Sun X B, Liu X Q, Li C, He L S, Chen S P, Su J L. Selection of reliable reference genes for gene expression studies on Rhododendron molle G.Don[J]. Frontiers in Plant Science, 2016, 7:1547.doi: 10.3389/fpls.2016.01547.
|
[25] |
Kenneth J, Livak. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
[26] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.doi: 10.1016/j.molp.2020.06.009.
URL
|
[27] |
Die J V, Jones R W, Ogden E L, Ehlenfeldt M K, Rowland L J. Characterization and analysis of anthocyanin-related genes in wild-type blueberry and the pink-fruited mutant cultivar pink lemonade:new insights into anthocyanin biosynthesis[J]. Agronom, 2020, 10(9):1296.doi: 10.3390/agronomy10091296.
URL
|
[28] |
Karppinen K, Lafferty D J, Albert N W, Mikkola N, McGhie T, Allan A C, Afzal B M, Häggman H, Espley R V, Jaakola L. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries[J]. The New Phytologist, 2021, 232(3):1350-1367.doi: 10.1111/nph.17669.
URL
|
[29] |
Zhang Y L, Kui L W, Albert N W, Elborough C, Espley R V, Andre C M, Fang Z Z. Identification of a strong anthocyanin activator,VbMYBA,from berries of Vaccinium bracteatum thunb[J]. Frontiers in Plant Science, 2021, 12:697212.doi: 10.3389/fpls.2021.697212.
URL
|
[30] |
Plunkett B J, Espley R V, Dare A P, Warren B A W, Grierson E R P, Cordiner S, Turner J L, Allan A C, Albert N W, Davies K M, Schwinn K E. MYBA from blueberry ( Vaccinium section cyanococcus) is a subgroup 6 type R2R3MYB transcription factor that activates anthocyanin production[J]. Frontiers in Plant Science, 2018, 9:1300.doi: 10.3389/fpls.2018.01300.
pmid: 30254656
|
[31] |
Wen C H, Chu F H. A R2R3-MYB gene LfMYB113 is responsible for autumn leaf coloration in formosan sweet gum ( Liquidambar formosana Hance)[J]. Plant and Cell Physiolog, 2017, 58(3):508-521.doi: 10.1093/pcp/pcw228.
|
[32] |
Liu Y F, Ma K X, Qi Y W, Lü G W, Ren X L, Liu Z D, Ma F W. Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in kiwifruit( Actinidia chinensis)[J]. Journal of Agricultural and Food Chemistr, 2021, 69(12):3677-3691.doi: 10.1021/acs.jafc.0c07037.
|
[33] |
Matus J T, Poupin M J, Cañó P, Bordeu E, Alcalde J A, Arce-Johnson P. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine ( Vitis vinifera L.)[J]. Plant Molecular Biolog, 2010, 72(6):607-620.doi: 10.1007/s11103-010-9597-4.
|
[34] |
Li Q, Wang J, Sun H Y, Shang X. Flower color patterning in pansy ( Viola× wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas[J]. Plant Physiology and Biochemistr, 2014, 84:134-141.doi: 10.1016/j.plaphy.2014.09.012.
|
[35] |
Zhang J J, Wang L S, Shu Q Y, Liu Z A, Li C H, Zhang J, Wei X L, Tian D K. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony[J]. Scientia Horticulturae, 2007, 114(2):104-111.doi: 10.1016/j.scienta.2007.05.009.
URL
|
[36] |
Gu Z Y, Zhu J, Hao Q, Yuan Y W, Duan Y W, Men S Q, Wang Q Y, Hou Q Z, Liu Z A, Shu Q Y, Wang L S. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony ( Paeonia suffruticosa)[J]. Plant & Cell Physiolog, 2019, 60(3):599-611.doi: 10.1093/pcp/pcy232.
|
[37] |
Yamagishi M. Oriental hybrid lily sorbonne homologue of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots[J]. Molecular Breeding, 2011, 28(3):381-389.doi: 10.1007/s11032-010-9490-5.
URL
|
[38] |
Zhang Y Z, Cheng Y W, Ya H Y, Xu S Z, Han J M. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes[J]. Frontiers in Plant Science, 2015, 6:964.doi: 10.3389/fpls.2015.00964.
pmid: 26583029
|
[39] |
Shi Q Q, Li L, Zhang X X, Luo J R, Li X, Zhai L J, He L X, Zhang Y L. Biochemical and comparative transcriptomic analyses identify candidate genes related to variegation formation in Paeonia rockii[J]. Molecules, 2017, 22(8):1364.doi: 10.3390/molecules22081364.
URL
|
[40] |
An X H, Tian Y, Chen K Q, Wang X F, Hao Y J. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. Journal of Plant Physiolog, 2012, 169(7):710-717.doi: 10.1016/j.jplph.2012.01.015.
|
[41] |
Wen C H, Tsao N W, Wang S Y, Chu F H. Color variation in young and senescent leaves of Formosan sweet gum ( Liquidambar formosana) by the gene regulation of anthocyanidin biosynthesis[J]. Physiologia Plantarum, 2021, 172(3):1750-1763.doi: 10.1111/ppl.13385.
URL
|