[1] |
|
|
Zhao Z H, Li S F, Huang H Y, Li C M, Wang Q B, Xue L G. Estimates of heritability and correlations for the carcass appearance performance of high-quailty broiler chickens[J]. Journal of Sichuan Agricultural Universit, 2015, 33(1):89-92.
|
[2] |
Schneider M R, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan[J]. Current Biolog, 2009, 19(3):R132-R142.doi: 10.1016/j.cub.2008.12.005.
|
[3] |
张择. 崇仁麻鸡获国家地理标志认证[J]. 质量探索, 2015, 12(10):29.
|
|
Zhang Z. Galeon sesame chicken receives national geographical indication certification[J]. Quality Exploration, 2015, 12(10):29.
|
[4] |
pmid: 11152763
|
[5] |
pmid: 1566372
|
[6] |
Ji S F, Zhu Z Y, Sun X Y, Fu X B. Functional hair follicle regeneration:an updated review[J]. Signal Transduction and Targeted Therap, 2021, 6(1):66.doi: 10.1038/s41392-020-00441-y.
|
[7] |
Ge W, Tan S J, Wang S H, Li L, Sun X F, Shen W, Wang X. Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development[J]. Theranostics, 2020, 10(17):7581-7598.doi: 10.7150/thno.44306.
pmid: 32685006
|
[8] |
Stenn K S, Nixon A J, Jahoda C A B, McKay I A, Paus R. What controls hair follicle cycling?[J]. Experimental Dermatolog, 2007, 8(4):229-236.doi: 10.1111/j.1600-0625.1999.tb00376.x.
URL
|
[9] |
Prum R O. Development and evolutionary origin of feathers[J]. The Journal of Experimental Zoolog, 1999, 285(4):291-306.doi: 10.1002/(sici)1097-010x.
URL
|
[10] |
Chen M J, Xie W Y, Pan N X, Wang X Q, Yan H C, Gao C Q. Methionine improves feather follicle development in chick embryos by activating Wnt/β-catenin signaling[J]. Poultry Science, 2020, 99(9):4479-4487.doi: 10.1016/j.psj.2020.05.047.
pmid: 32867991
|
[11] |
Jung H S, Francis-West P H, Widelitz R B, Jiang T X, Ting-Berreth S, Tickle C, Wolpert L, Chuong C M. Local inhibitory action of BMPs and their relationships with activators in feather formation:implications for periodic patterning[J]. Developmental Biolog, 1998, 196(1):11-23.doi: 10.1006/dbio.1998.8850.
|
[12] |
Houschyar K S, Borrelli M R, Tapking C, Popp D, Puladi B, Ooms M, Chelliah M P, Rein S, Pförringer D, Thor D, Reumuth G, Wallner C, Branski L K, Siemers F, Grieb G, Lehnhardt M, Yazdi A S, Maan Z N, Duscher D. Molecular mechanisms of hair growth and regeneration:current understanding and novel paradigms[J]. Dermatolog, 2020, 236(4):271-280.doi: 10.1159/000506155.
URL
|
[13] |
Wu P, Jiang T X, Lei M X, Chen C K, Hsieh Li S M, Widelitz R B, Chuong C M. Cyclic growth of dermal papilla and regeneration of follicular mesenchymal components during feather cycling[J]. Development, 2021, 148(18):198671.doi: 10.1242/dev.198671.
|
[14] |
Zhang T, Ding H, Chen L, Zhang S S, Wu P F, Xie K Z, Pan Z M, Zhang G X, Dai G J, Wu H Q, Wang J Y. Characterization of chilled chicken spoilage using an integrated microbiome and metabolomics analysis[J]. Food Research International, 2021, 144:110328.doi: 10.1016/j.foodres.2021.110328.
URL
|
[15] |
Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis[J]. BioEssays:News and Reviews in Molecular,Cellular and Developmental Biology, 2005, 27(3):247-261.doi: 10.1002/bies.20184.
pmid: 15714560
|
[16] |
Voshall A, Moriyama E N. Next-generation transcriptome assembly and analysis:impact of ploidy[J]. Methods, 2020, 176:14-24.doi: 10.1016/j.ymeth.2019.06.001.
pmid: 31176772
|
[17] |
Wu C L, Qin C K, Fu X F, Huang X X, Tian K C. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling(anagen,catagen and telogen)of Jiangnan cashmere goat( Capra hircus)[J]. BMC Veterinary Research, 2022, 18(1):1-23.doi: 10.1186/s12917-022-03253-0.
|
[18] |
Shi R J, Li S W, Liu P G, Zhang S H, Wu Z H, Wu T H, Gong S J, Wan Y. Identification of key genes and signaling pathways related to Hetian sheep wool density by RNA-seq technology[J]. PLoS One, 2022, 17(5):e0265989.doi: 10.1371/journal.pone.0265989.
URL
|
[19] |
Sello C T, Liu C, Sun Y F, Msuthwana P, Hu J T, Sui Y J, Chen S K, Zhou Y X, Lu H T, Xu C G, Sun Y, Liu J, Li S Y, Yang W. De novo assembly and comparative transcriptome profiling of Anser anser and Anser cygnoides geese species' embryonic skin feather follicles[J]. Genes, 2019, 10(5):351.doi: 10.3390/genes10050351.
URL
|
[20] |
Xi Y, Liu H H, Li L, Xu Q, Liu Y S, Wang L, Ma S C, Wang J M, Bai L L, Zhang R P, Han C C. Transcriptome reveals multi pigmentation genes affecting dorsoventral pattern in avian body[J]. Frontiers in Cell and Developmental Biolog, 2020, 8:560766.doi: 10.3389/fcell.2020.560766.
|
[21] |
Liu X H, Zhou R Y, Peng Y D, Zhang C S, Li L H, Lu C X, Li X L. Hair follicles transcriptome profiles in Bashang long-tailed chickens with different plumage colors[J]. Genes & Genomics, 2019, 41(11):1357-1367.doi: 10.1007/s13258-018-0740-y.
|
[22] |
Liu X Y, Wu Z, Li J Y, Bao H G, Wu C X. Genome-wide association study and transcriptome differential expression analysis of the feather rate in Shouguang chickens[J]. Frontiers in Genetics, 2020, 11:613078.doi: 10.3389/fgene.2020.613078.
URL
|
[23] |
徐晓晖. 霍尔多巴吉鹅初生羽色性别鉴定及胚胎期毛囊黑色素表达规律研究[D]. 长春: 吉林农业大学, 2022.doi: 2022.10.27163/d.
|
|
Xu X H. Sex identification of newborn feather color and study on melanin expression in hair follicles of Holdobaji geese during embryonic period[D]. Changchun: Jilin Agricultural University, 2022.
|
[24] |
Li Y C, He D Q, Ma Y H, Ma Q, Ding W, Chen Y H, Zhang M, Luo F, Chen L Y, Wang J K, Jiang L, Li Y K, Tao J Z. Skin transcriptome analysis identifies the key genes underlying fur development in Chinese Tan sheep in the birth and Er-Mao periods[J]. Gene, 2022, 820:146257.doi: 10.1016/j.gene.2022.146257.
URL
|
[25] |
Zheng X T, Zhang B, Zhang Y W, Zhong H A, Nie R X, Li J Y, Zhang H, Wu C X. Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens[J]. Scientific Reports, 2020, 10(1):12088.doi: 10.1038/s41598-020-68931-1.
pmid: 32694523
|
[26] |
Lü X G, Li Z, Chen S Y, Xie M K, Huang J W, Peng X F, Yang R X, Wang H P, Xu Y M, Feng C. Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering[J]. Biomaterials, 2016, 84:99-110.doi: 10.1016/j.biomaterials.2016.01.032.
pmid: 26826299
|
[27] |
Chen J, Jaeger K, Den Z, Koch P J, Sundberg J P, Roop D R. Mice expressing a mutant Krt75( K6hf)allele develop hair and nail defects resembling pachyonychia congenita[J]. Journal of Investigative Dermatolog, 2008, 128(2):270-279.doi: 10.1038/sj.jid.5701038.
URL
|
[28] |
Winter H, Schissel D, Parry D A D, Smith T A, Liovic M, Birgitte Lane E, Edler L, Langbein L, Jave-Suarez L F, Rogers M A, Wilde J, Peters G, Schweizer J. An unusual Ala12Thr polymorphism in the 1A α-helical segment of the companion layer-specific keratin K6hf:evidence for a risk factor in the etiology of the common hair disorder pseudofolliculitis barbae[J]. Journal of Investigative Dermatolog, 2004, 122(3):652-657.doi: 10.1111/j.0022-202x.2004.22309.x.
URL
|
[29] |
|
|
Tao L, Du B W, Zhang L. The development of frizzled follicle and genetic characteristics of candidate gene KRT75 in frizzled feather chicken[J]. Scientia Agricultura Sinica, 2015, 48(4):821-830.
|
[30] |
Li S M, Yang G, Chu J Y, Wang J, Liu A F, Mou C Y. Revealing the impacts on shaping scutate scales in goose skin[J]. Gene, 2022, 844:146840.doi: 10.1016/j.gene.2022.146840.
URL
|
[31] |
Stark H J, Breitkreutz D, Limat A, Bowden P, Fusenig N E. Keratins of the human hair follicle:hyperproliferative keratins consistently expressed in outer root sheath cells in vivo and in vitro[J]. Differentiation, 1987, 35(3):236-248.doi: 10.1111/j.1432-0436.1987.tb00174.x.
pmid: 2451629
|
[32] |
Pavlovsky M, Peled A, Sarig O, Astman N, Malki L, Meijers O, Assaf S, Schwartz J, Malovitski K, Hansen D, Sprecher E, Samuelov L. Coexistence of pachyonychia congenita and hidradenitis suppurativa:more than a coincidence[J]. The British Journal of Dermatolog, 2022, 187(3):392-400.doi: 10.1111/bjd.21674.
URL
|
[33] |
|
|
Yan R S, Pei Z, Ma X G, Zhang Y M, Li Y H. Expression patterns of common hair follicle keratins in hair cycle[J]. Chinese Journal of Cell and Stem Cell, 2019, 9(1):7-12.
|
[34] |
Chuong C M, Chen H M, Jiang T X, Chia J. Adhesion molecules in skin development:morphogenesis of feather and hair[J]. Annals of the New York Academy of Sciences, 1991, 642(1):263-280.doi: 10.1111/j.1749-6632.1991.tb24393.x.
URL
|
[35] |
Filshie B K, Rogers G E. An electron microscope study of the fine structure of feather keratin[J]. The Journal of Cell Biolog, 1962, 13(1):1-12.
|
[36] |
Pap P L, Osváth G, Daubner T, Nord A, Vincze O. Down feather morphology reflects adaptation to habitat and thermal conditions across the avian phylogeny[J]. Evolution, 2020, 74(10):2365-2376.doi: 10.1111/evo.14075.
URL
|
[37] |
Tsai S Y, Sennett R, Rezza A, Clavel C, Grisanti L, Zemla R, Najam S, Rendl M. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation[J]. Developmental Biolog, 2014, 385(2):179-188.doi: 10.1016/j.ydbio.2013.11.023.
|
[38] |
Du Y, Ling J Q, Wei X, Ning Y, Xie N, Gu H J, Yang F. Wnt/β-catenin signaling participates in cementoblast/osteoblast differentiation of dental follicle cells[J]. Connective Tissue Research, 2012, 53(5):390-397.doi: 10.3109/03008207.2012.668980.
pmid: 22360497
|
[39] |
Silvério K G, Davidson K C, James R G, Adams A M, Foster B L, Nociti F H Jr, Somerman M J, Moon R T. Wnt/β-catenin pathway regulates bone morphogenetic protein(BMP2)-mediated differentiation of dental follicle cells[J]. Journal of Periodontal Research, 2012, 47(3):309-319.doi: 10.1111/j.1600-0765.2011.01433.x.
pmid: 22150562
|
[40] |
Peñalba J V, Peters J L, Joseph L. Sustained plumage divergence despite weak genomic differentiation and broad sympatry in sister species of Australian woodswallows( Artamus spp.)[J]. Molecular Ecolog, 2022, 31(19):5060-5073.doi: 10.1111/mec.16637.
URL
|
[41] |
Jenni L, Ganz K, Milanesi P, Winkler R. Determinants and constraints of feather growth[J]. PLoS One, 2020, 15(4):e0231925.doi: 10.1371/journal.pone.0231925.
URL
|
[42] |
屠云洁, 姬改革, 章明, 刘一帆, 巨晓军, 单艳菊, 邹剑敏, 李华, 陈智武, 束婧婷. 鸡Wnt3a的SNPs筛选及其与皮肤毛囊密度性状关联分析[J]. 中国农业科学, 2022, 55(23):4769-4780.doi: 10.3864/j.issn.0578-1752.2022.23.016.
|
|
Tu Y J, Ji G G, Zhang M, Liu Y F, Ju X J, Shan Y J, Zou J M, Li H, Chen Z W, Shu J T. Screening of Wnt3a SNPs and its association analysis with skin feather follicle density traits in chicken[J]. Scientia Agricultura Sinica, 2022, 55(23):4769-4780.
|
[43] |
Wang X X, Liu Y H, He J, Wang J R, Chen X D, Yang R H. Regulation of signaling pathways in hair follicle stem cells[J]. Burns & Trauma, 2022, 10:tkac022.doi: 10.1093/burnst/tkac022.
|
[44] |
Botchkarev V A, Botchkareva N V, Peters E M J, Paus R. Epithelial growth control by neurotrophins:leads and lessons from the hair follicle[J]. Progress in Brain Research, 2004, 146:493-513.doi: 10.1016/s0079-6123(03)46031-7.
pmid: 14699982
|
[45] |
Botchkarev V A, Botchkareva N V, Albers K M, van der Veen C, Lewin G R, Paus R. Neurotrophin-3 involvement in the regulation of hair follicle morphogenesis[J]. Journal of Investigative Dermatolog, 1998, 111(2):279-285.doi: 10.1046/j.1523-1747.1998.00277.x.
URL
|
[46] |
Zhang C Z, Sun H Z, Zhang C H, Jin L, Sang D, Li S L. Effects of photoperiod on circadian clock genes in skin contribute to the regulation of hair follicle cycling of Inner Mongolia white cashmere goats[J]. Animal Science Journal, 2020, 91(4):e13320.doi: 10.1111/asj.13320.
URL
|
[47] |
Hibino T, Nishiyama T. Role of TGF-beta2 in the human hair cycle[J]. Journal of Dermatological Science, 2004, 35(1):9-18.doi: 10.1016/j.jdermsci.2003.12.003.
pmid: 15194142
|
[48] |
Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, Botchkarev V, Handjiski B, Metz M, Hibino T, Soma T, Paolo Dotto G, Paus R. Control of murine hair follicle regression(catagen)by TGF-β1 in vivo[J]. The FASEB Journal, 2000, 14(5):752-760.doi: 10.1096/fasebj.14.5.752.
URL
|
[49] |
Oshimori N, Fuchs E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation[J]. Cell Stem Cell, 2012, 10(1):63-75.doi: 10.1016/j.stem.2011.11.005.
pmid: 22226356
|
[50] |
Zhang W D, Wang N, Zhang T T, Wang M, Ge W, Wang X. Roles of melatonin in goat hair follicle stem cell proliferation and pluripotency through regulating the Wnt signaling pathway[J]. Frontiers in Cell and Developmental Biolog, 2021, 9:686805.doi: 10.3389/fcell.2021.686805.
|
[51] |
URL
|
[52] |
Daszczuk P, Mazurek P, Pieczonka T D, Olczak A, Boryń Ł M, Kobielak K. An intrinsic oscillation of gene networks inside hair follicle stem cells:an additional layer that can modulate hair stem cell activities[J]. Frontiers in Cell and Developmental Biolog, 2020, 8:595178.doi: 10.3389/fcell.2020.595178.
|
[53] |
Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. β-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin[J]. Cell, 2001, 105(4):533-545.doi: 10.1016/s0092-8674(01)00336-1.
pmid: 11371349
|