[1] |
doi: 10.1146/annurev.phyto.45.062806.094325
URL
|
[2] |
Akagi A, Fukushima S, Okada K, Jiang C J, Yoshida R, Nakayama A, Shimono M, Sugano S, Yamane H, Takatsuji H. WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction[J]. Plant Molecular Biology, 2014, 86(1/2):171-183.doi: 10.1007/s11103-014-0221-x.
doi: 10.1007/s11103-014-0221-x
URL
|
[3] |
Zhang Z G, Feechan A, Pedersen C, Newman M A, Qiu J L, Olesen K L, Thordal-Christensen H. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways[J]. The Plant Journal, 2007, 49(2):302-312.doi: 10.1111/j.1365-313X.2006.02961.x.
doi: 10.1111/j.1365-313X.2006.02961.x
URL
|
[4] |
Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.doi: 10.1038/nature05286.
doi: 10.1038/nature05286
URL
|
[5] |
Rushton P J, Torres J T, Parniske M, Wernert P, Hahlbrock K, Somssich I E. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. The EMBO Journal, 1996, 15(20):5690-5700.
doi: 10.1002/j.1460-2075.1996.tb00953.x
URL
|
[6] |
Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5):199-206.doi: 10.1016/s1360-1385(00)01600-9.
doi: 10.1016/s1360-1385(00)01600-9
pmid: 10785665
|
[7] |
Ciolkowski I, Wanke D, Birkenbihl R P, Somssich I E. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function[J]. Plant Molecular Biology, 2008, 68(1/2):81-92.doi: 10.1007/s11103-008-9353-1.
doi: 10.1007/s11103-008-9353-1
URL
|
[8] |
Wani S H, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses:Latest discoveries and future prospects[J]. Plant Cell Reports, 2021, 40(7):1071-1085.doi: 10.1007/s00299-021-02691-8.
doi: 10.1007/s00299-021-02691-8
URL
|
[9] |
Kim K C, Fan B F, Chen Z X. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae[J]. Plant Physiology, 2006, 142(3):1180-1192.doi: 10.1104/pp.106.082487.
doi: 10.1104/pp.106.082487
URL
|
[10] |
Birkenbihl R P, Diezel C, Somssich I E. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J]. Plant Physiology, 2012, 159(1):266-285.doi: 10.1104/pp.111.192641.
doi: 10.1104/pp.111.192641
pmid: 22392279
|
[11] |
Choi N, Im J H, Lee E, Lee J, Choi C, Park S R, Hwang D J. WRKY10 transcriptional regulatory cascades in rice are involved in basal defense and Xa1-mediated resistance[J]. Journal of Experimental Botany, 2020, 71(12):3735-3748.doi: 10.1093/jxb/eraa135.
doi: 10.1093/jxb/eraa135
pmid: 32227093
|
[12] |
Li Y Y, Liao S T, Mei P Y, Pan Y Y, Zhang Y, Zheng X Z, Xie Y K, Miao Y. OsWRKY93 dually functions between leaf senescence and in response to biotic stress in rice[J]. Frontiers in Plant Science, 2021, 12:643011.doi: 10.3389/fpls.2021.643011.
doi: 10.3389/fpls.2021.643011
URL
|
[13] |
Son S, An H K, Seol Y J, Park S R, Im J H. Rice transcription factor WRKY114 directly regulates the expression of OsPR1a and chitinase to enhance resistance against Xanthomonas oryzae pv. oryzae[J]. Biochemical and Biophysical Research Communications, 2020, 533(4):1262-1268.doi: 10.1016/j.bbrc.2020.09.141.
doi: 10.1016/j.bbrc.2020.09.141
URL
|
[14] |
Peng Y, Bartley L E, Canlas P, Ronald P C. OsWRKY IIa transcription factors modulate rice innate immunity[J]. Rice, 2010, 3(1):36-42.doi: 10.1007/s12284-010-9039-6.
doi: 10.1007/s12284-010-9039-6
pmid: 21961049
|
[15] |
doi: 10.7668/hbnxb.2018.06.022
|
|
Lei Y, Zhang Z N, Hu G, Liu J F, Tang Y, Zhang N, Si H J, Wu J H. GhWRKY22 isolation and function analysis in cotton resistance to Verticillium wilt[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(6):160-168.
|
[16] |
Zhang X, Liu J F, Wu L Z, Wang Z Y, Zhang S L. GbWRKY1,a member of the WRKY transcription factor family identified from Gossypium barbadense,is involved in resistance to Verticillium wilt[J]. Biotechnology & Biotechnological Equipment, 2019, 33(1):1354-1364.doi: 10.1080/13102818.2019.1667873.
doi: 10.1080/13102818.2019.1667873
|
[17] |
Wang X L, Yan Y, Li Y Z, Chu X Q, Wu C G, Guo X Q. GhWRKY40,a multiple stress-responsive cotton WRKY gene,plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J]. PLoS One, 2014, 9(4):e93577.doi: 10.1371/journal.pone.0093577.
doi: 10.1371/journal.pone.0093577
URL
|
[18] |
Yu F F, Huaxia Y F, Lu W J, Wu C G, Cao X C, Guo X Q. GhWRKY15,a member of the WRKY transcription factor family identified from cotton( Gossypium hirsutum L.),is involved in disease resistance and plant development[J]. BMC Plant Biology, 2012, 12:144.doi: 10.1186/1471-2229-12-144.
doi: 10.1186/1471-2229-12-144
URL
|
[19] |
刘建芬, 雷煜, 张振楠, 胡广, 唐叶, 张宁, 司怀军, 吴家和. GhWRKY48负调控棉花对大丽轮枝菌的抗性[J]. 华北农学报, 2019, 34(5):99-105.doi: 10.7668/hbnxb.201751632.
doi: 10.7668/hbnxb.201751632
|
|
Liu J F, Lei Y, Zhang Z N, Hu G, Tang Y, Zhang N, Si H J, Wu J H. Resistance of GhWRKY48 negatively regulated cotton against Verticillium dahlia[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(5):99-105.
|
[20] |
Mizutani M. Impacts of diversification of cytochrome P450 on plant metabolism[J]. Biological & Pharmaceutical Bulletin, 2012, 35(6):824-832.doi: 10.1248/bpb.35.824.
doi: 10.1248/bpb.35.824
|
[21] |
Mao G H, Meng X Z, Liu Y D, Zheng Z Y, Chen Z X, Zhang S Q. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. The Plant Cell, 2011, 23(4):1639-1653.doi: 10.1105/tpc.111.084996.
doi: 10.1105/tpc.111.084996
URL
|
[22] |
Zhou J G, Wang X Y, He Y X, Sang T, Wang P C, Dai S J, Zhang S Q, Meng X Z. Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis[J]. The Plant Cell, 2020, 32(8):2621-2638.doi: 10.1105/tpc.19.00971.
doi: 10.1105/tpc.19.00971
URL
|
[23] |
Wang D J, Wang L, Su W H, Ren Y J, You C H, Zhang C, Que Y X, Su Y C. A class Ⅲ WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses[J]. Scientific Reports, 2020, 10(1):20964.doi: 10.1038/s41598-020-78007-9.
doi: 10.1038/s41598-020-78007-9
URL
|
[24] |
Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y N. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiologia Plantarum, 2020, 168(1):98-117.doi: 10.1111/ppl.12978.
doi: 10.1111/ppl.12978
URL
|
[25] |
Kuki Y, Ohno R, Yoshida K, Takumi S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 150:71-79.doi: 10.1016/j.plaphy.2020.02.029.
doi: 10.1016/j.plaphy.2020.02.029
URL
|
[26] |
doi: 10.13271/j.mpb.016.007009
|
|
Yu Y, Jia Z D, Ma P Y, Guo X D, Xie Y Z, Bian X F. Research progress on the role of WRKY transcription factors in plant defense[J]. Molecular Plant Breeding, 2018, 16(21):7009-7020.
|