[1] 毕影东,李炜,肖佳雷,李琬,刘明,刘淼,张必弦,林红,来永才. 大豆分子育种现状,挑战与展望[J]. 中国农学通报,2014,30(6):33-39. Bi Y D,Li W,Xiao J L,Li W,Liu M,Liu M,Zhang B X,Lin H,Lai Y C. Soybean molecular breeding:current status,challenges and perspectives[J]. Chinese Agricultural Science Bulletin,2014,30(6):33-39. [2] Westcott P. USDA agricultural baseline projections to 2012[J].Situation Outlook Report Rice,2010. [3] 王育民,卜实,刘忠臣. 国内外大豆生产和贸易现状分析及前景展望[J]. 大豆科技,2001(6):21-23. doi:10.3969/j.issn.1674-3547.2001.06.016. Wang Y M,Bu S,Liu Z C. Analysis and prospect of soybean production and trade at home and abroad[J]. Soybean Technology,2001(6):21-23. [4] 王曙明,范旭红. 大豆倒伏问题应引起高度重视[J]. 中国农业信息,2008(11):29. doi:10.3969/j.issn.1674-3547.2009.01.003. Wang S M,fan X H. Soybean lodging should be paid more attention[J]. China Agricultural Information,2008(11):29. [5] Lee S H,Bailey M A,Mian M A R,Carter T E,Ashley D A,Hussey R S. Molecular markers associated with soybean plant height,lodging,and maturity across locations[J]. Crop Sci,1996,36(3):728-735. [6] 吴晓雷,王永军,贺超英,陈受宜,盖钧镒,王学臣. 大豆重要农艺性状的QTL分析[J].遗传学报,2001,28(10):947-955. Wu X L,Wang Y J,He C Y,Chen S Y,Gai J Y,Wang X C. Mapping of some agronomic traits of soybean[J]. J Genet Genomics,2001,28(10):947-955. [7] Kabelka E A,Diers B W,Fehr W R,LeRoy A R,Baianu I C,You T,Neece D J,Nelson R L. Putative alleles for increased yield from soybean plant introductions[J]. Crop Sci,2004,44(3):784-791. doi:10.2135/cropsci2004.0784. [8] Wang D,Graef G L,Procopiuk A M,Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations[J]. Theor Appl Genet,2004,108(3):458-467. doi:10.1007/s00122-003-1449-z. [9] 陈庆山,张忠臣,刘春燕,辛大伟,单大鹏,邱红梅. 大豆主要农艺性状的QTL分析[J]. 中国农业科学,2007,40(1):41-47. doi:10.3321/j.issn:0578-1752.2007.01.006. Chen Q S,Zhang Z C,Liu C Y,Xin D W,Shan D P,Qiu H M. QTL analysis of main agronomic characters of soybean[J]. China Agricultural Science,2007,40(1):41-47. [10] 孙亚男,齐照明,单大鹏,刘春燕,胡国华,陈庆山. 大豆株高QTL的定位与整合分析[J]. 分子植物育种,2010(4):69-75. Sun Y N,Qi Z M,Shan D P,Liu C Y,Hu G H,Chen Q S. Location and integration analysis of QTL for plant height of soybean[J]. Molecular Plant Breeding,2010(4):69-75. [11] 张峰阁. 大豆结荚习性控制基因的遗传定位[D]. 北京:中国科学院,2018. Zhang F G. Genetic mapping of controlling genes of soybean podding habit[D]. Beijing:Chinese Academy of Sciences,2018. [12] 雷硕. 大豆顶生花序长度性状的种质资源筛选及基因定位[D]. 长春:吉林大学,2018. Lei S. Selection of germplasm resources and gene mapping of soybean terminal inflorescence length[D]. Changchun:Jilin University,2018. [13] 尹振功,王强,孟宪欣,刘广阳,郭怡璠,王秀君. 基于Overview和物理图谱的大豆株高性状候选基因挖掘[J]. 大豆科学,2019(6):914-920. doi:10.11861/j.issn.1000-9841.2019.06.0914. Yin Z G,Wang Q,Meng X X,Liu G Y,Guo Y L,Wang X J. Candidate gene mining for plant height traits based on overview and physical map[J]. Soybean Science,2019(6):914-920. [14] 王瑞,凌亮,詹鹏杰,于纪珍,楚建强,平俊爱,张福耀. 控制高粱分蘖与主茎株高一致性的基因定位[J]. 作物学报,2019,45(6):829-838. doi:10.3724/SP.J.1006.2019.84111. Wang R,Ling L,Zhan P J,Yu J Z,Chu J Q,Ping J A,Zhang F Y. Gene mapping to control the consistency between tillering and main stem height of sorghum[J]. Acta Agronomica Sinica,2019,45(6):829-838. [15] DalCorso G,Pesaresi P,Masiero S,Aseeva E,Sch nemann D,Finazzi G,Joliot P,Barbato R,Leister D. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in arabidopsis[J]. Cell,2008,132(2):273-285. doi:10.1016/j.cell.2007.12.028. [16] Wang H,Ngwenyama N,Liu Y D,Walker J C,Zhang S Q. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinase in Arabidopsis[J]. Plant Cell,2007,19(1):63-73. doi:10.1105/tpc.106.048298. [17] Zhao H W,Xing D H,Li Q Q. Unique features of plant cleavage and polyadenylation specificity factor revealed by proteomic studies[J]. Plant Physiol,2009,151(3):1546-1556. doi:10.2307/40537975. [18] Cao D N,Cheng H,Wu W,Soo H M,Peng J R. Gibberellin mobilizes distinct DELLA-Dependent transcriptomes to regulate seins are related to Arabidopsis seedling development[J]. Proteomics,2006,142(2):509-525. doi:10.2307/20205944. [19] Hassidim M,Yakir E,Fradkin D,Hilman D,Kron I,Keren N,Harir Y,Yerushalmi S,Green R M. Mutations in chloroplast RNA binding provide evidence for the involvement of the chloroplast in the regulation of the circadian clock in Arabidopsis[J]. Plant J,2007,51(4):551-562. doi:10.1111/j.1365-313x.2007.03160.x. [20] Kanno Y,Oikawa T,Chiba Y,Ishimaru Y,Shimizu T,Sano N,Koshiba T,Kamiya Y,Ueda M,Seo M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nature Commun,2016,7:13245. doi:10.1038/ncomms13245. [21] Somerville T C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J]. Plant Cell,1997,9(5):689-701. doi:org/10.1105/tpc.9.5.689. [22] Li F L,Asami T,Wu X Z,Tsang E W T,Cutler A J. A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development[J]. Plant Physiol,2007,45(1):87-97. doi:10.2307/40065611. [23] Bechtold U,Murphy D J,Mullineaux P M. Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights[J]. Plant Cell,2004,16(4):908-919. doi:10.1105/tpc.015818. [24] Zhang F,Wang L K,Esther K E,Kevin S,Hong Q. Histone deacetylases SRT1 and SRT2 interact with eNAP1 to mediate ethylene-induced transcriptional repression[J]. Plant Cell,2018,30(1):153-166. doi:10.1105/tpc.17.00671. [25] Eduardo M B,David E B,Lucía J V,Riad N,Hector C,María L F. In CURVATA11 and CUPULIFORMIS2 are redundant genes that encode epigenetic machinery components in Arabidopsis[J]. Plant Cell,2018,30(7):1596-1616. doi:10.1105/tpc.18.00300. [26] Lena V,Jiyoung P,Roland S,Christopher L. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis[J]. Front Plant Sci,2019,1:264. doi:10.3389/fpls.2019.01264. [27] Shi H T,Wei Y X,He C Z. Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis[J]. Plant Physiol Bioch,2016,100:150-155. doi:10.1016/j.plaphy.2016.01.018. [28] Schonrock N. Polycomb-group proteins repressthe floral activator AGL19 in the FLC-independent vernalization pathway[J]. Genes Dev,2006,20(12):1667-1678. doi:10.1101/gad.377206. [29] Wenkel S,Turck F,Singer K,Gissot L,Gourrierec J L,Samach A,Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis[J]. Plant Cell,2006,18(11):2971-2984. doi:10.1105/tpc.106.043299. [30] Havaux M,Eymery F,Porfirova S,Rey P,Dörmann P. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana[J]. Plant Cell,2005,17(12):3451-3469. doi:10.1105/tpc.105.037036. [31] Flores-Pérez,Sauret-Güeto S,Gas E,Jarvis P,Rodrí guez-Concepción M. A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids[J]. Plant Cell,2008,20(5):1303-1315. doi:10.1105/tpc.108.058768. [32] Silvia de B,Dall'Osto L,Giuseppe T,Tomas M,Roberto B. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem Ⅱ subunits and the electron transport rate in grana membranes of Arabidopsis[J]. The Plant Cell,2008,20(4):1012-1028. doi:10.1105/tpc.107.055749. [33] 杜龙岗,王美兴. 玉米SLAF标记的开发及其在玉米果皮纤维素含量BSA分析中的应用[J]. 中国农业科学,2018,51(8):1421-1430. doi:10.3864/j.issn.0578-1752.2018.08.001. Du L G,Wang M X. SLAF-Marker development and its application in BSA analysis of cellulose content in pericarp of maize[J]. Sci Agric Sin,2018,51(8):1421-1430. [34] Hu Z B,Zhang H R,Kan G Z,Ma D Y,Zhang D,Shi G X,Hong D L,Zhang G Z,Yu D Y. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean(Glycine max L. Merr.)[J]. Genetica,2013,141(4-6):247-254. doi:10.1007/s10709-013-9723-8. [35] Reinprecht Y,Poysa V,Yu K,Rajcan I,Ablett G,Pauls K. Seed and agronomic QTL in low linolenic acid,lipoxygenase-free soybean(Glycine max (L.)Merrill)germplasm[J]. Genome,2006,49(12):1510-1527. doi:10.1139/g06-112. [36] Kabelka E A,Diers B W,Fehr W R,LeRoy A R,Baianu I C,You T,Neece D J,Nelson R L. Putative alleles for increased yield from soybean plant introductions[J]. Crop Sci,2004,44(3):784-791. doi:10.2135/cropsci2004.0784. [37] Sun D S,Li W B,Zhang Z C,Chen Q S,Ning H L,Qiu L J,Sun G L. Quantitative trait loci analysis for the developmental behavior of soybean[J]. Springer Nature Journal,2006,112(4):665-673. doi:10.1007/s001220050895. [38] Kim K S,Diers B W,Hyten D L,Mian M A,Shannon J G,Nelson R L. Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations[J]. Theor Appl Genet,2012,125(6):1353-1369. doi:10.1007/s00122-012-1944-1. [39] Yao D,Liu Z Z,Zhang J,Liu S Y,Wang P W. Analysis of quantitative trait loci for main plant traits in soybean[J]. Genetics Molecular Research,2015,14(2):6101-6109. doi:10.4238/2015.June.8.8. [40] Chen Q S,Zhang Z C,Liu C Y,Xin D W,Shan D P,Qiu H M. QTL analysis of major agronomic traits in soybean[J]. Entia Agricultura Sinica,2007,6(4):399-405. doi:10.1016/S1671-2927(07)60062-5. [41] Contreras R,Mora F,Mar O,Higashi W,Schuster I. A Genome-wide association study for agronomic traits in soybean using SNP Markers and SNP-based haplotype analysis[J]. PLoS One,2017,12(2):e0171105. doi:10.1371/journal.pone.0171105. [42] Fang Y L,Liu S L,Dong Q Z,Zhang K X,Tian Z X,Li X Y,Li W B,Qi Z Y,Wang Y,Tian X C,Song J,Wang J J,Yang C,Jiang S T,Li W X,Ning H L. Linkage analysis and multi-locus genome-wide association studies identify QTNs controlling soybean plant height[J]. Front Plant Sci,2020,11:9. doi:10.3389/fpls.2020.00009. [43] Choi S C,Lee S,Kim S R,Lee Y S,Liu C,Cao X. Trithorax group protein oryza sativa trithorax1 controls flowering time in rice via interaction with early heading date3[J]. Plant Physiol,2014,164(3):1326-1337. doi:10.1104/pp.113.228049. [44] 周少立. 组蛋白修饰和DNA甲基化调控水稻发育的表观遗传机制研究[D]. 武汉:华中农业大学,2017. Zhou S L. Epigenetic mechanism of histone modification and DNA methylation regulating rice development[D]. Wuhan:Huazhong Agricultural University,2017. [45] Yuri N,Hiroshi Y,Yuki O,Shinya W,Nozomi S,Yoshichika T,Kazuhiko S,Amane M,Toshiharu S. PGR5-Dependent cyclic electron transport around PSI contributes to the redox homeostasis in chloroplasts rather than CO2 fixation and biomass croduction in rice[J]. Plant Physiol,2012,53(12):2117-2126. doi:10.1093/pcp/pcs153. [46] 李健健. 水稻染色质重塑因子CHR729对激素代谢的影响[J]. 湖北农业科学,2015,54(2):468-473. doi:10.14088/j.cnki.issn0439-8114.2015.02.055. Li J J. Effect of rice chromatin remodeling factor CHR729 on hormone metabolism[J]. Hubei Agricultural Science,2015,54(2):468-473. [47] 张莹雪. 水稻温敏不育系育性转换的蛋白质组学分析[D].开封:河南大学,2015. Zhang Y X. Proteomic analysis of fertility transformation of thermo sensitive male sterile lines in rice[D]. Kaifeng:Henan University,2015. [48] Sharma S,Kaur C,Singla-Pareek S L,Sopory S K. OsSRO1a Interacts with RNA binding domain-containing protein(OsRBD1)and functions in abiotic stress tolerance in yeast[J]. Front Plant Sci,2016,7:62. doi:10.3389/fpls.2016.00062. [49] 娄腊梅,解志伟,尹亮,赵金凤,袁守江,张文会,赵宝华,李学勇. 两个水稻细卷叶等位突变体的基因定位[J]. 核农学报,2014,28(1):7-13. doi:10.11869/j.issn.100-8551.2014.01.0007. Lou L M,Xie Z W,Yin L,Zhao J F,Yuan S J,Zhang W H,Zhao B H,Li X Y. Gene mapping of two rice fine roll leaf allelic mutants[J]. Journal of Nuclear Agriculture Science,2014,28(1):7-13. |