[1] |
Smith J A B, Murach K A, Dyar K A, Zierath J R. Exercise metabolism and adaptation in skeletal muscle[J]. Nature Reviews Molecular Cell Biology, 2023, 24(9):607-632.doi: 10.1038/s41580-023-00606-x.
pmid: 37225892
|
[2] |
Zhang D, Wu S M, Zhang X X, Ren S Q, Tang Z L, Gao F. Coordinated transcriptional and post-transcriptional epigenetic regulation during skeletal muscle development and growth in pigs[J]. Journal of Animal Science and Biotechnology, 2022, 13(1):146.doi: 10.1186/s40104-022-00791-3.
pmid: 36457054
|
[3] |
Sato T, Higashioka K, Sakurai H, Yamamoto T, Goshima N, Ueno M, Sotozono C. Core transcription factors promote induction of PAX3-positive skeletal muscle stem cells[J]. Stem Cell Reports, 2019, 13(2):352-365.doi: 10.1016/j.stemcr.2019.06.006.
pmid: 31353225
|
[4] |
Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells[J]. Nature, 2005, 435(7044):948-953.doi: 10.1038/nature03594.
|
[5] |
Maeng G, Das S, Greising S M, Gong W M, Singh B N, Kren S, Mickelson D, Skie E, Gafni O, Sorensen J R, Weaver C V, Garry D J, Garry M G. Humanized skeletal muscle in MYF5/MYOD/MYF6-null pig embryos[J]. Nature Biomedical Engineering, 2021, 5(8):805-814.doi: 10.1038/s41551-021-00693-1.
pmid: 33782573
|
[6] |
Kassar-Duchossoy L, Gayraud-Morel B, Gomès D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice[J]. Nature, 2004, 431(7007):466-471.doi: 10.1038/nature02876.
|
[7] |
Crist C G, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway S J, Buckingham M. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(32):13383-13387.doi: 10.1073/pnas.0900210106.
pmid: 19666532
|
[8] |
Ling Y H, Sui M H, Zheng Q, Wang K Y, Wu H, Li W Y, Liu Y, Chu M X, Fang F G, Xu L N. MiR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat[J]. Scientific Reports, 2018, 8(1):3909.doi: 10.1038/s41598-018-22262-4.
|
[9] |
Zhu Y, Li P, Dan X G, Kang X L, Ma Y, Shi Y G. MiR-377 inhibits proliferation and differentiation of bovine skeletal muscle satellite cells by targeting FHL2[J]. Genes, 2022, 13(6):947.doi: 10.3390/genes13060947.
|
[10] |
Wu N Z, Gu T T, Lu L, Cao Z F, Song Q Q, Wang Z X, Zhang Y, Chang G B, Xu Q, Chen G H. Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle[J]. Journal of Cellular Physiology, 2019, 234(4):3490-3499.doi: 10.1002/jcp.26857.
pmid: 30471101
|
[11] |
Han S Z, Gao K, Chang S Y, Choe H M, Paek H J, Quan B H, Liu X Y, Yang L H, Lü S T, Yin X J, Quan L H, Kang J D. MiR-455-3p is negatively regulated by myostatin in skeletal muscle and promotes myoblast differentiation[J]. Journal of Agricultural and Food Chemistry, 2022, 70(33):10121-10133.doi: 10.1021/acs.jafc.2c02474.
|
[12] |
Che J, Xu C D, Wu Y Y, Jia P Y, Han Q, Ma Y T, Wang X L, Zheng Y J. MiR-1290 promotes myoblast differentiation and protects against myotube atrophy via Akt/p70/FoxO3 pathway regulation[J]. Skeletal Muscle, 2021, 11(1):6.doi: 10.1186/s13395-021-00262-9.
pmid: 33722298
|
[13] |
Li L, Zhang L, Zhang Y. Roles of miR-494 in intervertebral disk degeneration and the related mechanism[J]. World Neurosurgery, 2018:e365-e372.doi: 10.1016/j.wneu.2018.12.098.
|
[14] |
He W L, Li Y H, Chen X L, Lu L Y, Tang B, Wang Z X, Pan Y B, Cai S R, He Y L, Ke Z F. MiR-494 acts as an anti-oncogene in gastric carcinoma by targeting c-myc[J]. Journal of Gastroenterology and Hepatology, 2014, 29(7):1427-1434.doi: 10.1111/jgh.12558.
pmid: 24612089
|
[15] |
Zhang J J, Wang T, Zhang Y, Wang H, Wu Y B, Liu K H, Pei C. Upregulation of serum miR-494 predicts poor prognosis in non-small cell lung cancer patients[J]. Cancer Biomarkers, 2018, 21(4):763-768.doi: 10.3233/CBM-170337.
pmid: 29286916
|
[16] |
Zhang Y, Guo L, Li Y H, Feng G H, Teng F, Li W, Zhou Q. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer[J]. Molecular Cancer, 2018, 17(1):1.doi: 10.1186/s12943-017-0753-1.
pmid: 29304823
|
[17] |
Li J J, Chen J, Wang S H, Li P, Zheng C L, Zhou X, Tao Y G, Chen X, Sun L C, Wang A J, Cao K, Tang S J, Zhou J D. Blockage of transferred exosome-shuttled miR-494 inhibits melanoma growth and metastasis[J]. Journal of Cellular Physiology, 2019, 234(9):15763-15774.doi: 10.1002/jcp.28234.
|
[18] |
Tay J, Tiao J, Hughes Q, Gilmore G, Baker R. Therapeutic potential of miR-494 in thrombosis and other diseases:a review[J]. Australian Journal of Chemistry, 2016, 69(10):1078.doi: 10.1071/ch16020.
|
[19] |
Welten S M J, de Vries M R, Peters E A B, Agrawal S, Quax P H A, Nossent A Y. Inhibition of Mef2a enhances neovascularization via post-transcriptional regulation of 14q32 microRNAs miR-329 and miR-494[J]. Molecular Therapy Nucleic Acids, 2017, 7:61-70.doi: 10.1016/j.omtn.2017.03.003.
|
[20] |
Yamamoto H, Morino K, Nishio Y, Ugi S, Yoshizaki T, Kashiwagi A, Maegawa H. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3[J]. American Journal of Physiology Endocrinology and Metabolism, 2012, 303(12):E1419-E1427.doi: 10.1152/ajpendo.00097.2012.
|
[21] |
Sun Y, Cui D, Zhang Z, Zhang Q, Ji L, Ding S Z. Voluntary wheel exercise alters the levels of miR-494 and miR-696 in the skeletal muscle of C57BL/6 mice[J]. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2016, 202:16-22.doi: 10.1016/j.cbpb.2016.07.002.
|
[22] |
Dutta P, Haller E, Sharp A, Nanjundan M. MIR494 reduces renal cancer cell survival coinciding with increased lipid droplets and mitochondrial changes[J]. BMC Cancer, 2016, 16:33.doi: 10.1186/s12885-016-2053-3.
pmid: 26794413
|
[23] |
Iwasaki H, Imamura T, Morino K, Shimosato T, Tawa M, Ugi S, Sakurai H, Maegawa H, Okamura T. MicroRNA-494 plays a role in fiber type-specific skeletal myogenesis in human induced pluripotent stem cells[J]. Biochemical and Biophysical Research Communications, 2015, 468(1/2):208-213.doi: 10.1016/j.bbrc.2015.10.128.
|
[24] |
Tang Z P, Zhao W, Du J K, Ni X, Zhu X Y, Lu J Q. MiR-494 contributes to estrogen protection of cardiomyocytes against oxidative stress via targeting(NF-κB)repressing factor[J]. Frontiers in Endocrinology, 2018, 9:215.doi: 10.3389/fendo.2018.00215.
|
[25] |
吴洁, 秦兴华, 侯作旭, 付子豪, 李国华, 杨红燕, 张星, 高峰. MiR-494-3p通过下调胰岛素受体底物-1促糖尿病大鼠心肌细胞胰岛素抵抗[J]. 生理学报, 2019, 71(2):271-278.doi: 10.13294/j.aps.2018.0095.
|
|
Wu J, Qin X H, Hou Z X, Fu Z H, Li G H, Yang H Y, Zhang X, Gao F. MiR-494-3p reduces insulin sensitivity in diabetic cardiomyocytes by down-regulation of insulin receptor substrate 1[J]. Acta Physiologica Sinica, 2019, 71(2):271-278.
|
[26] |
Ning S W, Zhang S Q, Guo Z K. MicroRNA-494 regulates high glucose-induced cardiomyocyte apoptosis and autophagy by PI3K/AKT/mTOR signalling pathway[J]. ESC Heart Failure, 2023, 10(2):1401-1411.doi: 10.1002/ehf2.14311.
pmid: 36772911
|
[27] |
Cui R R, Ye S L, Zhong J Y, Liu L J, Li S J, Lin X, Yuan L Q, Yi L. MicroRNA-494 inhibits apoptosis of murine vascular smooth muscle cells in vitro[J]. Molecular Medicine Reports, 2019, 19(5):4457-4467.doi: 10.3892/mmr.2019.10085.
|
[28] |
Iwasaki H, Ichihara Y, Morino K, Lemecha M, Sugawara L, Sawano T, Miake J, Sakurai H, Nishi E, Maegawa H, Imamura T. MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells[J]. Scientific Reports, 2021, 11(1):1161.doi: 10.1038/s41598-020-80742-y.
pmid: 33441918
|
[29] |
Chen C Y, Chen J Y, He L N, Stiles B L. PTEN:tumor suppressor and metabolic regulator[J]. Frontiers in Endocrinology, 2018, 9:338.doi: 10.3389/fendo.2018.00338.
|
[30] |
Yu Y M, Wu Z, Shen Z L, Xie Y Y, Cao Y S, Zhu J F. MiR-494-3p mediates oxaliplatin resistance of colorectal cancer cells via PTEN/AKT pathway[J]. Tropical Journal of Pharmaceutical Research, 2022, 21(4):272-732.doi: 10.4314/tjpr.v21i4.7.
|
[31] |
Shan G, Tang T, Xia Y, Qian H J. MEG3 interacted with miR-494 to repress bladder cancer progression through targeting PTEN[J]. Journal of Cellular Physiology, 2020, 235(2):1120-1128.doi: 10.1002/jcp.29025.
pmid: 31294463
|
[32] |
Xu F, Liu G Q, Wang L J, Wang X Y, Jin X, Bo W. MiR-494 promotes progression of retinoblastoma via PTEN through PI3K/AKT signaling pathway[J]. Oncology Letters, 2020, 20(2):1952-1960.doi: 10.3892/ol.2020.11749.
pmid: 32724440
|
[33] |
Luoreng Z M, Wang X P, Mei C G, Zan L S. Comparison of microRNA profiles between bovine mammary glands infected with Staphylococcus aureus and Escherichia coli[J]. International Journal of Biological Sciences, 2018, 14(1):87-99.doi: 10.7150/ijbs.22498.
|
[34] |
Lawless N, Foroushani A B K, McCabe M S, O'Farrelly C, Lynn D J. Next generation sequencing reveals the expression of a unique miRNA profile in response to a gram-positive bacterial infection[J]. PLoS One, 2013, 8(3):e57543.doi: 10.1371/journal.pone.0057543.
|
[35] |
Andrade G M, da Silveira J C, Perrini C, Del Collado M, Gebremedhn S, Tesfaye D, Meirelles F V, Perecin F. The role of the PI3K-Akt signaling pathway in the developmental competence of bovine oocytes[J]. PLoS One, 2017, 12(9):e0185045.doi: 10.1371/journal.pone.0185045.
|
[36] |
Shan T Z, Liu J Q, Xu Z Y, Wang Y Z. Roles of phosphatase and tensin homolog in skeletal muscle[J]. Journal of Cellular Physiology, 2019, 234(4):3192-3196.doi: 10.1002/jcp.26820.
pmid: 30471096
|
[37] |
Lepper C, Partridge T A, Fan C M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration[J]. Development, 2011, 138(17):3639-3646.doi: 10.1242/dev.067595.
pmid: 21828092
|
[38] |
Langdon C G, Gadek K E, Garcia M R, Evans M K, Reed K B, Bush M, Hanna J A, Drummond C J, Maguire M C, Leavey P J, Finkelstein D, Jin H J, Schreiner P A, Rehg J E, Hatley M E. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity[J]. Nature Communications, 2021, 12(1):5520.doi: 10.1038/s41467-021-25829-4.
pmid: 34535684
|
[39] |
Kuang S H, Rudnicki M A. The emerging biology of satellite cells and their therapeutic potential[J]. Trends in Molecular Medicine, 2008, 14(2):82-91.doi: 10.1016/j.molmed.2007.12.004.
pmid: 18218339
|
[40] |
Rodgers J T, King K Y, Brett J O, Cromie M J, Charville G W, Maguire K K, Brunson C, Mastey N, Liu L, Tsai C R, Goodell M A, Rando T A. mTORC1 controls the adaptive transition of quiescent stem cells from Go to G(Alert)[J]. Nature, 2014, 510(7505):393-396.doi: 10.1038/nature13255.
|
[41] |
Yue F, Song C Y, Huang D, Narayanan N, Qiu J M, Jia Z H, Yuan Z R, Oprescu S N, Roseguini B T, Deng M, Kuang S H. PTEN inhibition ameliorates muscle degeneration and improves muscle function in a mouse model of Duchenne muscular dystrophy[J]. Molecular Therapy, 2021, 29(1):132-148.doi: 10.1016/j.ymthe.2020.09.029.
pmid: 33068545
|
[42] |
Gupta A, Dey C S. PTEN and SHIP2 regulates PI3K/Akt pathway through focal adhesion kinase[J]. Molecular and Cellular Endocrinology, 2009, 309(1/2):55-62.doi: 10.1016/j.mce.2009.05.018.
|
[43] |
Yue F, Bi P P, Wang C, Li J, Liu X Q, Kuang S H. Conditional loss of pten in myogenic progenitors leads to postnatal skeletal muscle hypertrophy but age-dependent exhaustion of satellite cells[J]. Cell Reports, 2016, 17(9):2340-2353.doi: 10.1016/j.celrep.2016.11.002.
pmid: 27880908
|
[44] |
Yue F, Bi P P, Wang C, Shan T Z, Nie Y H, Ratliff T L, Gavin T P, Kuang S H. Pten is necessary for the quiescence and maintenance of adult muscle stem cells[J]. Nature Communications, 2017, 8:14328.doi: 10.1038/ncomms14328.
pmid: 28094257
|
[45] |
Li Y Z, Di Cristofano A, Woo M. Metabolic role of PTEN in insulin signaling and resistance[J]. Cold Spring Harbor Perspectives in Medicine, 2020, 10(8):a036137.doi: 10.1101/cshperspect.a036137.
|
[46] |
Su D, Zhang C L, Gao Y C, Liu X Y, Li C P, Huangfu J, Xiao R. Gene expression and correlation of pten and Fabp4 in liver,muscle,and adipose tissues of type 2 diabetes rats[J]. Medical Science Monitor, 2015, 21:3616-3621.doi: 10.12659/msm.895490.
|
[47] |
Crespo-Masip M, Pérez-Gómez A, Guzmán C, Rayego S, DoladéN, García-Carrasco A, Jover R, Valdivielso J M. PTEN deletion in adult mice induces hypoinsulinemia with concomitant low glucose levels[J]. Frontiers in Endocrinology, 2022, 13:850214.doi: 10.3389/fendo.2022.850214.
|