[1] |
doi: 10.3864/j.issn.0578-1752.2015.16.004
|
|
Lu W T, Yu H, Cao S N, Chen C Q. Effects of climate warming on growth process and yield of summer maize in Huang-Huai-Hai plain in last 20 years[J]. Scientia Agricultura Sinica, 2015, 48(16):3132-3145.
|
[2] |
肖祖栋, 陈先敏, 李斌彬, 申思, 邓涛, 李凤元, 周顺利. 不同品种夏玉米生长发育和产量形成对播期和密度的响应特征[J]. 华北农学报, 2023, 38(1):110-116.doi: 10.7668/hbnxb.20193312.
doi: 10.7668/hbnxb.20193312
|
|
Xiao Z D, Chen X M, Li B B, Shen S, Deng T, Li F Y, Zhou S L. Response characteristics of growth-development and yield-formation of different summer maize cultivars to sowing date and planting density[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(1):110-116.
doi: 10.7668/hbnxb.20193312
|
[3] |
张镇涛, 杨晓光, 高继卿, 王晓煜, 白帆, 孙爽, 刘志娟, 明博, 谢瑞芝, 王克如, 李少昆. 气候变化背景下华北平原夏玉米适宜播期分析[J]. 中国农业科学, 2018, 51(17):3258-3274.doi: 10.3864/j.issn.0578-1752.2018.17.003.
doi: 10.3864/j.issn.0578-1752.2018.17.003
|
|
Zhang Z T, Yang X G, Gao J Q, Wang X Y, Bai F, Sun S, Liu Z J, Ming B, Xie R Z, Wang K R, Li S K. Analysis of suitable sowing date for summer maize in North China plain under climate change[J]. Scientia Agricultura Sinica, 2018, 51(17):3258-3274.
doi: 10.3864/j.issn.0578-1752.2018.17.003
|
[4] |
doi: 10.3969/j.issn.1000-6362.2021.06.005
|
|
Zhang X X, Sun Z F, Zheng F X, Liu J, Li C R, Wang Y H. Characteristics of drought distribution for summer maize over whole growth period in Huang-Huai-Hai plain based on crop water deficit index[J]. Chinese Journal of Agrometeorology, 2021, 42(6):495-506.
|
[5] |
doi: 10.7606/j.issn.1000-4025.2015.06.1222
|
|
Cao D, Chen D Q, Wu Q, Yin L N, Deng X P, Wang S W. Research on rewatering post-drought growth recovery capacity and physiological characteristics of different maize varieties[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(6):1222-1228.
|
[6] |
doi: 10.7666/d.Y2587813
|
|
Li G H. Identification of drought resistance traits of peanut and study on physiological mechanism of drought resistance of different varieties[D]. Taian: Shandong Agricultural University, 2014.
|
[7] |
Wang Y S, Ni F, Yin D H, Chen L J, Li Y H, He L X, Zhang Y L. Physiological response of Lagerstroemia indica (L.)Pers.seedlings to drought and rewatering[J]. Tropical Plant Biology, 2021, 14(4):360-370.doi: 10.1007/s12042-021-09294-3.
doi: 10.1007/s12042-021-09294-3
|
[8] |
刘婷婷, 陈道钳, 王仕稳, 殷俐娜, 邓西平. 不同品种高粱幼苗在干旱复水过程中的生理生态响应[J]. 草业学报, 2018, 27(6):100-110.doi: 10.11686/cyxb2017410.
doi: 10.11686/cyxb2017410
|
|
Liu T T, Chen D Q, Wang S W, Yin L N, Deng X P. Physio-ecological responses to drought and subsequent re-watering in sorghum seedlings[J]. Acta Prataculturae Sinica, 2018, 27(6):100-110.
|
[9] |
徐银萍, 潘永东, 刘强德, 任诚, 姚元虎, 贾延春, 陈文庆, 火克仓, 包奇军, 赵锋, 张华瑜. 生长后期干旱复水对饲草大麦产量、品质及叶绿素含量的影响[J]. 中国土壤与肥料, 2020(2):192-197.doi: 10.11838/sfsc.1673-6257.19175.
doi: 10.11838/sfsc.1673-6257.19175
|
|
Xu Y P, Pan Y D, Liu Q D, Ren C, Yao Y H, Jia Y C, Chen W Q, Huo K C, Bao Q J, Zhao F, Zhang H Y. Effects of rewatering after drought stress on yield quality and chlorophyll of forage barley in late growth period[J]. Soils and Fertilizers Sciences in China, 2020(2):192-197.
|
[10] |
Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. Journal of Experimental Botany, 2004, 55(395):225-236.doi: 10.1093/jxb/erh005.
doi: 10.1093/jxb/erh005
pmid: 14673035
|
[11] |
Avramova V, AbdElgawad H, Zhang Z F, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H, Beemster G T S. Drought induces distinct growth response,protection,and recovery mechanisms in the maize leaf growth zone[J]. Plant Physiology, 2015, 169(2):1382-1396.doi: 10.1104/pp.15.00276.
doi: 10.1104/pp.15.00276
|
[12] |
Zhao Y, Cheng X Y, Liu X D, Wu H F, Bi H H, Xu H X. The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis[J]. Frontiers in Plant Science, 2018, 9:1426.doi: 10.3389/fpls.2018.01426.
doi: 10.3389/fpls.2018.01426
pmid: 30323824
|
[13] |
Baloglu M C, Eldem V, Hajyzadeh M, Unver T. Genome-wide analysis of the bZIP transcription factors in cucumber[J]. PLoS One, 2014, 9(4):e96014.doi: 10.1371/journal.pone.0096014.
doi: 10.1371/journal.pone.0096014
URL
|
[14] |
Rolly N K, Imran Q M, Shahid M, Imran M, Khan M, Lee S U, Hussain A, Lee I J, Yun B W. Drought-induced AtbZIP62 transcription factor regulates drought stress response in Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 156:384-395.doi: 10.1016/j.plaphy.2020.09.013.
doi: 10.1016/j.plaphy.2020.09.013
URL
|
[15] |
Sun X L, Li Y, Cai H, Bai X, Ji W, Ding X D, Zhu Y M. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt,osmotic and drought stresses[J]. Journal of Plant Research, 2012, 125(3):429-438.doi: 10.1007/s10265-011-0448-4.
doi: 10.1007/s10265-011-0448-4
URL
|
[16] |
Ying S, Zhang D F, Fu J, Shi Y S, Song Y C, Wang T Y, Li Y. Cloning and characterization of a maize bZIP transcription factor,ZmbZIP72,confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2):253-266.doi: 10.1007/s00425-011-1496-7.
doi: 10.1007/s00425-011-1496-7
URL
|
[17] |
Liu C T, Mao B G, Ou S J, Wang W, Liu L C, Wu Y B, Chu C C, Wang X P. OsbZIP71,a bZIP transcription factor,confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1/2):19-36.doi: 10.1007/s11103-013-0115-3.
doi: 10.1007/s11103-013-0115-3
URL
|
[18] |
Zhu M K, Meng X Q, Cai J, Li G, Dong T T, Li Z Y. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato[J]. BMC Plant Biol, 2018, 18(1):83.doi: 10.1186/s12870-018-1299-0.
doi: 10.1186/s12870-018-1299-0
pmid: 29739325
|
[19] |
doi: 10.3969/j.issn.1009-0002.2009.01.037
|
|
Zhao N, Zhao F, Li Y H. Advances in research on zinc finger protein[J]. Letters in Biotechnology, 2009, 20(1):131-134.
doi: 10.1023/A:1005368222340
URL
|
[20] |
Grassmann F. Conduct and quality control of differential gene expression analysis using high-throughput transcriptome sequencing(RNASeq)[M]// Methods in Molecular Biology. New York: Springer New York, 2019, 1834:29-43.doi: 10.1007/978-1-4939-8669-9_2.
doi: 10.1007/978-1-4939-8669-9_2
|
[21] |
Xie T, Chen C J, Li C H, Liu J R, Liu C Y, He Y H. Genome-wide investigation of WRKY gene family in pineapple:Evolution and expression profiles during development and stress[J]. BMC Genomics, 2018, 19(1):490.doi: 10.1186/s12864-018-4880-x.
doi: 10.1186/s12864-018-4880-x
|
[22] |
Bowman M J, Park W, Bauer P J, Udall J A, Page J T, Raney J, Scheffler B E, Jones D C, Campbell B T. RNA-Seq transcriptome profiling of upland cotton( Gossypium hirsutum L.)root tissue under water-deficit stress[J]. PLoS One, 2013, 8(12):e82634.doi: 10.1371/journal.pone.0082634.
doi: 10.1371/journal.pone.0082634
URL
|
[23] |
Yang O, Popova O V, Süthoff U, Lüking I, Dietz K J, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance[J]. Gene, 2009, 436(1/2):45-55.doi: 10.1016/j.gene.2009.02.010.
doi: 10.1016/j.gene.2009.02.010
URL
|
[24] |
Lakra N, Nutan K K, Das P, Anwar K, Singla-Pareek S L, Pareek A. A nuclear-localized histone-gene binding protein from rice(OsHBP1b)functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery[J]. Journal of Plant Physiology, 2015, 176:36-46.doi: 10.1016/j.jplph.2014.11.005.
doi: 10.1016/j.jplph.2014.11.005
pmid: 25543954
|
[25] |
Wei K F, Chen J, Wang Y M, Chen Y H, Chen S X, Lin Y N, Pan S, Zhong X J, Xie D X. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research, 2012, 19(6):463-476.doi: 10.1093/dnares/dss026.
doi: 10.1093/dnares/dss026
pmid: 23103471
|
[26] |
Ma H Z, Liu C, Li Z X, Ran Q J, Xie G N, Wang B M, Fang S, Chu J F, Zhang J R. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology, 2018, 178(2):753-770.doi: 10.1104/pp.18.00436.
doi: 10.1104/pp.18.00436
pmid: 30126870
|
[27] |
doi: 10.13610/j.cnki.1672-352x.20220520.002
|
|
Jia L Q, Zhao Q F, Chen S. The expression profiling of 11 ZmbZIP genes under abiotic stress in maize[J]. Journal of Anhui Agricultural University, 2022, 49(2):197-204.
|
[28] |
Zhao J, Guo R R, Guo C L, Hou H M, Wang X P, Gao H. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family[J]. Frontiers in Plant Science, 2016, 7:376.doi: 10.3389/fpls.2016.00376.
doi: 10.3389/fpls.2016.00376
pmid: 27066030
|
[29] |
杨艳歌. 玉米ZmbZIPs基因家族的克隆及抗逆基因的筛选与功能研究[D]. 大庆: 黑龙江八一农垦大学, 2013.
|
|
Yang Y G. Cloning of Zea mays ZmbZIPs gene family in maize,screening and functional study of stress resistance genes[D]. Daqing: Heilongjiang Bayi Agricultural University, 2013.
|
[30] |
Wang B, Zheng J, Liu Y J, Wang J H, Wang G Y. Cloning and characterization of the stress-induced bZIP gene Zmb ZIP60 from maize[J]. Molecular Biology Reports, 2012, 39(5):6319-6327.doi: 10.1007/s11033-012-1453-y.
doi: 10.1007/s11033-012-1453-y
pmid: 22307781
|
[31] |
Iwata Y, Koizumi N. An Arabidopsis transcription factor,AtbZIP60,regulates the endoplasmic reticulum stress response in a manner unique to plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(14):5280-5285.doi: 10.1073/pnas.0408941102.
doi: 10.1073/pnas.0408941102
pmid: 15781873
|
[32] |
doi: 10.19303/j.issn.1008-0384.2022.004.005
|
|
Li W X, Yao X Z, Zhang B H, Liu Y. Connection between tea ZFP2 and drought resistance of tobacco plants[J]. Fujian Journal of Agricultural Sciences, 2022, 37(4):453-459.
|
[33] |
Seong S Y, Shim J S, Bang S W, Kim J K. Overexpression of OsC3H10,a CCCH-zinc finger,improves drought tolerance in rice by regulating stress-related genes[J]. Plants (Basel,Switzerland), 2020, 9(10):E1298.doi: 10.3390/plants9101298.
doi: 10.3390/plants9101298
|
[34] |
Sénéchal F, Graff L, Surcouf O, Marcelo P, Rayon C, Bouton S, Mareck A, Mouille G, Stintzi A, Höfte H, Lerouge P, Schaller A, Pelloux J. Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5,a subtilisin-like serine protease[J]. Annals of Botany, 2014, 114(6):1161-1175.doi: 10.1093/aob/mcu035.
doi: 10.1093/aob/mcu035
pmid: 24665109
|
[35] |
doi: 10.7685/jnau.201701036
|
|
Ma H, Wang S, Zhou Y L. Research progress of calcium-dependent protein kinases in plants[J]. Journal of Nanjing Agricultural University, 2017, 40(4):565-572.
|
[36] |
王莹, 王晓宇, 孙德慧, 霍红雁, 刘海臣, 徐惠, 张继星. 蓖麻钙依赖蛋白激酶29基因克隆与表达分析[J]. 华北农学报, 2023, 38(2):85-92. doi: 10.7668/hbnxb.20192958.
doi: 10.7668/hbnxb.20192958
|
|
Wang Y, Wang X Y, Sun D H, Huo H Y, Liu H C, Xu H, Zhang J X. Cloning and expression analysis of castor calcium dependent protein kinase 29 gene[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(2):85-92.
doi: 10.7668/hbnxb.20192958
|
[37] |
doi: 10.13568/j.cnki.651094.651316.2020.12.16.0002
|
|
Zhou Z X, Lan H Y. CDPK signaling pathway and its interaction components in plants[J]. Journal of Xinjiang University (Natural Science Edition in Chinese and English), 2021(6):705-714.
|
[38] |
Zang S J, Qin L Q, Zhao Z N, Zhang J, Zou W H, Wang D J, Feng A Y, Yang S L, Que Y X, Su Y C. Characterization and functional implications of the nonexpressor of pathogenesis-related genes 1( NPR1)in Saccharum[J]. Int J Mol Sci, 2022, 23(14):7984.doi: 10.3390/ijms23147984.
doi: 10.3390/ijms23147984
|