[1] Smeets K, Opdenakker K, Remans T, Forzani C, Hirt H, Vangronsveld J, Cuypers A. The role of the kinase OXI1 in cadmium-and copper-induced molecular responses in Arabidopsis thaliana[J]. Plant, Cell & Environment, 2013, 36(6):1228-1238.doi:10.1111/pce.12056. [2] 鲜靖苹, 王勇, 马晖玲.一氧化氮信号途径参与草地早熟禾耐镉机制的研究[J].草地学报, 2019, 27(6):1577-1586. Xian J P, Wang Y, Ma H L. Study on cadmium-resistant mechanism of Poa pratensis mediated by no signaling pathway[J]. Acta Agrestia Sinica, 2019, 27(6):1577-1586. [3] 杨颂娟, 王秋月, 华丽君, 黄真池. 镉胁迫对桉树(Eucalyptus)保护酶活性及相关基因表达的影响[J].分子植物育种, 2020, 18(6):2006-2012.doi:10.13271/j.mpb.018.002006. Yang S J, Wang Q Y, Hua L J, Huang Z C. Effects of cadmium stress on protective enzymes activity and related genes expression in Eucalyptus[J]. Molecular Plant Breeding, 2020, 18(6):2006-2012. [4] 陈能场, 郑煜基, 何晓峰, 李小飞, 张晓霞. 《全国土壤污染状况调查公报》探析[J].农业环境科学学报, 2017, 36(9):1689-1692.doi:10.11654/jaes.2017-1220. Chen N C, Zheng Y J, He X F, Li X F, Zhang X X. Analysis of the report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9):1689-1692. [5] 胡文海, 詹秀花, 闫小红, 王旭明, 黄黎锋. 24-表油菜素内酯对干旱胁迫下辣椒幼苗叶片抗氧化酶系统及耐旱相关基因表达的影响[J].植物研究, 2015, 35(6):908-914.doi:10.7525/j.issn.1673-5102.2015.06.019. Hu W H, Zhan X H, Yan X H, Wang X M, Huang L F. Effects of 24-epibrassinolide on antioxidant system and expression of drought-tolerance relative genes in pepper seedlings under drought stress[J]. Bulletin of Botanical Research, 2015, 35(6):908-914. [6] Demirci T, Çelikkol Akçay U, Göktürk Baydar N. Effects of 24-epibrassinolide and l-phenylalanine on growth and caffeic acid derivative production in hairy root culture of Echinacea purpurea L. Moench[J]. Acta Physiologiae Plantarum, 2020, 42(4):1-11.doi:10.1007/s11738-020-03055-7. [7] Singh I, Shono M. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato[J]. Plant Growth Regulation, 2005, 47(2/3):111-119.doi:10.1007/s10725-005-3252-0. [8] Thussagunpanit J, Jutamanee K, Kaveeta L, Chai-Arree W, Pankean P, Homvisasevongsa S, Suksamrarn A. Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress[J]. Journal of Plant Growth Regulation, 2015, 34(2):320-331.doi:10.1007/s00344-014-9467-4. [9] Li J, Yang P, Gan Y T, Yu J H, Xie J M. Brassinosteroid alleviates chilling-induced oxidative stress in pepper by enhancing antioxidation systems and maintenance of photosystem Ⅱ[J]. Acta Physiologiae Plantarum, 2015, 37(11):1-11.doi:10.1007/s11738-015-1966-9. [10] 俞明宏, 王力明, 刘继, 李焕秀, 林立金, 唐懿. 表油菜素内酯对镉胁迫下番茄幼苗生长及镉累积的影响[J].中国土壤与肥料, 2020(3):151-156.doi:10.11838/sfsc.1673-6257.19467. Yu M H, Wang L M, Liu J, Li H X, Lin L J, Tang Y. Effects of epibrassinolide on the growth and cadmium accumulation of tomato seedlings under cadmium stress[J]. Soil and Fertilizer Sciences in China, 2020(3):151-156. [11] 孙维悦, 于丽杰, 金晓霞, 董延龙. 2, 4-EBL对不同浓度镉胁迫下龙葵(Solanum nigrum L.)幼苗的缓解作用[J].分子植物育种, 2019, 17(11):3735-3745.doi:10.13271/j.mpb.017.003735. Sun W Y, Yu L J, Jin X X, Dong Y L. Alleviation effects of 2, 4-EBL on seedlings of Solanum nigrum L. under different concentration of cadmium stress[J]. Molecular Plant Breeding, 2019, 17(11):3735-3745. [12] Sanjari S, Keramat B, Nadernejad N, Mozafari H. Ameliorative effects of 24-epibrassinolide and thiamine on excess cadmium-induced oxidative stress in Canola(Brassica napus L.) plants[J]. Journal of Plant Interactions, 2019, 14(1):359-368.doi:10.1080/17429145.2019.1637952. [13] Chen L, Long C, Wang D, Yang J Y. Phytoremediation of cadmium(Cd) and uranium(U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators[J]. Chemosphere, 2020, 242:125112.doi:10.1016/j.chemosphere.2019.125112. [14] Jan S, Alyemeni M N, Wijaya L, Alam P, Siddique K H, Ahmad P. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings[J]. BMC Plant Biology, 2018, 18(1):146.doi:10.1186/s12870-018-1359-5. [15] Murshed R, Lopez-Lauri F, Sallanon H. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato(Solanum lycopersicon L, cv. Micro-tom)[J]. Physiology and Molecular Biology of Plants, 2013, 19(3):363-378.doi:10.1007/s12298-013-0173-7. [16] 吴雪霞, 张圣美, 杨左芬, 朱宗文, 张爱冬, 尚静, 田守波, 查丁石. 短期温度胁迫对西葫芦叶片抗坏血酸代谢系统的影响[J].上海农业学报, 2020, 36(1):53-58.doi:10.15955/j.issn1000-3924.2020.01.09. Wu X X, Zhang S M, Yang Z F, Zhu Z W, Zhang A D, Shang J, Tian S B, Zha D S. Effects of short-low and high temperature stress on ascorbic acid metabolism system in squash seedlings leaves[J]. Acta Agriculturae Shanghai, 2020, 36(1):53-58. [17] 王小红, 郭军康, 贾红磊, 李艳萍, 吕欣, 任倩. 外源水杨酸缓解镉对番茄毒害作用的研究[J].农业环境科学学报, 2019, 38(12):2705-2714.doi:10.11654/jaes.2019-0754. Wang X H, Guo J K, Jia H L, Li Y P, Lü X, Ren Q. The effect of exogenous salicylic acid on alleviating cadmium toxicity in tomato plants[J]. Journal of Agro-Environment Science, 2019, 38(12):2705-2714. [18] 方志刚, 胡朝阳, 蔡庆生. 两个多花黑麦草品种对镉胁迫的生理响应及其镉耐性差异[J].植物生理学报, 2020, 56(5):1033-1042.doi:10.13592/j.cnki.ppj.2019.0532. Fang Z G, Hu Z Y, Cai Q S. Physiological response to cadmium stress and differences in cadmium tolerance of two Lolium multiflorum cultivars[J]. Plant Physiology Journal, 2020, 56(5):1033-1042. [19] Hayat S, Alyemeni M N, Hasan S A. Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress[J]. Saudi Journal of Biological Sciences, 2012, 19(3):325-335.doi:10.1016/j.sjbs.2012.03.005. [20] Kaya C. Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system[J]. Physiologia Plantarum, 2020, 15(6):13153-13160.doi:10.1111/ppl.13153. [21] 覃勇荣, 汤丰瑜, 严海杰, 白新高, 刘旭辉. 重金属胁迫对任豆种子萌发及幼苗抗氧化酶活性的影响[J].种子, 2017, 36(10):31-36.doi:10.16590/j.cnki.1001-4705.2017.10.031. Qin Y R, Tang F Y, Yan H J, Bai X G, Liu X H. Effects of heavy metal stress on seed germination and seedlings antioxidant enzyme activity of Zenia insigni[J]. Seed, 2017, 36(10):31-36. [22] Aravind P, Prasad M N V. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism[J]. Plant Physiology and Biochemistry, 2005, 43(2):107-116.doi:10.1016/j.plaphy.2005.01.002. [23] Feng J, Chen L C, Zuo J R. Protein S-Nitrosylation in plants:Current progresses and challenges[J]. Journal of Integrative Plant Biology, 2019, 61(12):1206-1223.doi:10.1111/jipb.12780. [24] Shan C J, Wang B S, Sun H L, Gao S, Li H. H2S induces NO in the regulation of AsA-GSH cycle in wheat seedlings by water stress[J]. Protoplasma, 2020, 257(5):1487-1493.doi:10.1007/s00709-020-01510-3. [25] Liang Y L, Zheng P, Li S, Li K Z, Xu H N. nitrate reductase-dependent NO production is involved in H2S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes[J]. Scientia Horticulturae, 2018, 229(2):207-214.doi:10.1016/j.scienta.2017.10.044. [26] Xu Z G, Ge Y, Zhang W, Zhao Y L, Yang G Y. The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation[J]. BMC Plant Biology, 2018, 18(1):19.doi:10.1186/s12870-018-1231-7. [27] Yang Q L, Yao C L, Wang Z Y. Acute temperature and cadmium stress response characterization of small heat shock protein 27 in large yellow croaker, Larimichthys crocea[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2012, 155(2):190-197.doi:10.1016/j.cbpc.2011.08.003. [28] Wang P J, Yue C, Chen D, Zheng Y C, Zhang Q, Yang J F, Ye N X. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant(Camellia sinensis)[J]. Genes & Genomics, 2019, 41(1):17-33.doi:10.1007/s13258-018-0734-9. [29] Zhao L, Zhang W, Song Q, Xuan Y, Li K, Cheng L, Qiao H, Wang G, Zhou C. A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat[J]. Plant Biology, 2020, 22(6):1072-1085.doi:10.1111/plb.13155. [30] Zhu D, Hou L X, Xiao P L, Guo Y, Deyholos M K, Liu X. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress[J]. Plant Science, 2019, 280:132-142.doi:10.1016/j.plantsci.2018.03.018. [31] Cai Z D, Xian P Q, Wang H, Lin R B, Lian T X, Cheng Y B, Ma Q B, Nian H. Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes[J]. Frontiers in Plant Science, 2020, 11:724.doi:10.3389/fpls.2020.00724. |