[1] Kerth C R. The science of meat quality[M]. UK:John Wiley & Sons, 2013. [2] Kamanga-Sollo E, Pampusch M S, White M E, Hathaway M R, Dayton W R. Effects of heat stress on proliferation, protein turnover, and abundance of heat shock protein messenger ribonucleic acid in cultured porcine muscle satellite cells[J]. Journal of Animal Science, 2011, 89(11):3473-3480. doi:10.2527/jas.2011-4123. [3] Ohno Y, Yamada S, Sugiura T, Ohira Y, Yoshioka T, Goto K. Possible role of NF-κB signals in heat stress-associated increase in protein content of cultured C2C12 cells[J]. Cells Tissues Organs, 2011, 194(5):363-370. doi:10.1159/000323324. [4] Yoshihara T, Naito H, Kakigi R, Ichinoseki-Sekine N, Ogura Y, Sugiura T, Katamoto S.Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle[J]. Acta physiologica, 2013, 207(2):416-426. doi:10.1111/apha.12040. [5] Stahly T S, Williams N H, Lutz T R, Ewan R C, Swenson S G. Dietary B vitamin needs of strains of pigs with high and moderate lean growth[J]. Journal of Animal Science, 2007, 85(1):188-195. doi:10.2527/jas.2006-086. [6] Chai J, Xiong Q, Zhang P P, Shang Y Y, Zheng R, Peng J, Jiang S W. Evidence for a new allele at the SERCA1 locus affecting pork meat quality in part through the imbalance of Ca2+ homeostasis[J]. Molecular Biology Reports, 2010, 37(1):613-619. doi:10.1007/s11033-009-9872-0. [7] Archile-Contreras A C, Purslow P P. Oxidative stress may affect meat quality by interfering with collagen turnover by muscle fibroblasts[J]. Food Research International, 2011, 44(2):582-588. doi:10.1016/j.foodres.2010.12.002. [8] Mansilla F, Dominguez C A G, Yeadon J E, Corydon T J, Burden S J, Knudsen C R. Translation elongation factor eEF1A binds to a novel myosin binding protein-C-like protein[J]. Journal of Cellular Biochemistry, 2008, 105(3):847-858. doi:10.1002/jcb.21880. [9] Baker J, Riley G, Romero M R, Haynes A R, Hilton H, Simon M, Hancock J, Tateossian H, Ripoll V M, Blanco G. Identification of a Z-band associated protein complex involving KY, FLNC and IGFN1[J]. Experimental Cell Research, 2010, 316(11):1856-1870. doi:10.1016/j.yexcr.2010.02.027 [10] Bosutti A, Scaggiante B, Grassi G, Guarnieri G, Biolo G. Overexpression of the elongation factor 1A1 relates to muscle proteolysis and proapoptotic p66(ShcA) gene transcription in hypercatabolic trauma patients[J]. Metabolism Clinical and Experimental, 2007, 56(12):1629-1634. doi:10.1016/j.metabol.2007.07.003. [11] Kilpinen S, Ojala K, Kallioniemi O. Analysis of kinase gene expression patterns across 5681 human tissue samples reveals functional genomic taxonomy of the kinome[J]. PLoS One, 2010, 5(12):e15068-e15081. doi:10.1371/journal.pone.0015068. [12] Paco S, Kalko S G, Jou C, Rodriguez M A, Cusi V, Corbera J, Torner F, Muntoni F, Feng L, Rivas E, Nascimento A, Colomer J, Jimenez-Mallebrera C. Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets[J]. Neuromuscular Disorders, 2013, 23(9-10):743. doi:10.1016/j.nmd.2013.06.389. [13] Li X, Baker J, Cracknell T, Haynes A R, Blanco G. IGFN1_v1 is required for myoblast fusion and differentiation[J]. PLoS One, 2017, 12(6):e0180217. doi:10.1371/journal.pone.0180217. [14] Malila Y, Tempelman R J, Sporer K R B, Ernst C W, Velleman S G, Reed K M, Strasburg G M. Differential gene expression between normal and pale, soft, and exudative turkey meat[J]. Poultry Science, 2013, 92(6):1621-1633. doi:10.3382/ps.2012-02778. [15] Hao Y, Feng Y J, Yang P G, Cui Y J, Liu J R, Yang C H, Gu X H. Transcriptome analysis reveals that constant heat stress modifies the metabolism and structure of the porcine Longissimus dorsi skeletal muscle[J]. Molecular Genetics and Genomics, 2016, 291(6):2101-2115. doi:10.1007/s00438-016-1242-8. [16] Kim J S, Lee Y H, Chang Y U, Yi H K. PPARγ regulates inflammatory reaction by inhibiting the MAPK/NF-κB pathway in C2C12 skeletal muscle cells[J]. Journal of Physiology and Biochemistry, 2017, 73(1):49-57. doi:10.1007/s13105-016-0523-3. [17] Ge J, Liu K, Niu W, Chen M, Wang M, Xue Y M, Gao C B, Ma P X, Lei B. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration[J]. Biomaterials, 2018, 175:19-29. doi:10.1016/j.biomaterials.2018.05.027. [18] Xie S J, Li J H, Chen H F, Tan Y Y, Liu S R, Zhang Y, Xu H, Yang J H, Liu S, Zheng L L, Huang M B, Guo Y H, Zhang Q, Zhou H, Qu L H. Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development[J]. Cell Death & Differentiation, 2018, 25(9):1581-1597. doi:10.1038/s41418-018-0063-1. [19] 金洁娜,郑景晨,倪连松,沈飞霞.阻断p38MAPK信号通路对高糖培养大鼠肾小球系膜细胞增殖和氧化应激的影响[J].浙江医学,2007,29(6):545-547.doi:10.3969/j.issn.1006-2785.2007.06.010. Jn J N, Zheng J C, Ni L S, Shen F X. The effects of blockade of p38 MAPK signal transduction pathway on the proliferation of glomerular mesangial cells and oxidative stress under high glucose concentration[J]. Zhejiang Medical Journal, 2007, 29(6):545-547. [20] Shin J H, Jeong J Y, Jin Y C, Kim I D, Lee J K. p38β MAPK affords cytoprotection against oxidative stress-induced astrocyte apoptosis via induction of αB-crystallin and its anti-apoptotic function[J]. Neuroscience Letter, 2011, 501(3):132-137. doi:10.1016/j.neulet.2011.06.061. [21] Diamond-Stanic M K, Marchionne E M, Teachey M K, Durazo D E, Kim J S, Henriksen E J. Critical role of the transient activation of p38 MAPK in the etiology of skeletal muscle insulin resistance induced by low-level in vitro oxidant stress[J]. Biochemical and Biophysical Research Communications, 2011, 405(3):439-444. doi:10.1016/j.bbrc.2011.01.049. [22] Liu B M, Jian Z, Li Q, Li K, Wang Z Y, Liu L, Tang L Z, Yi X L, Wang H, Li C Y, Gao T W. Baicalein protects human melanocytes from H2O2-induced apoptosis via inhibiting mitochondria-dependent caspase activation and the p38 MAPK pathway[J]. Free Radical Biology and Medicine, 2012, 53(2):183-193. doi:10.1016/j.freeradbiomed.2012.04.015. [23] Supanji Shimomachi M, Hasan M Z, Kawaichi M, Oka C. HtrA1 is induced by oxidative stress and enhances cell senescence through p38 MAPK pathway[J]. Experimental Eye Research, 2013,112:79-92. doi:10.1016/j.exer.2013.04.013. [24] Tian Y, Xiao Y H, Wang B L, Sun C, Tang K F, Sun F. Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways[J]. Bioscience Reports, 2018, 38(4):BSR20171003. doi:10.1042/BSR20171003. [25] Will K, Kuzinski J, Kalbe C, Palin M F, Rehfeldt C. Effects of leptin and adiponectin on the growth of porcine myoblasts are associated with changes in p44/42 MAPK signaling[J]. Domestic Animal Endocrinology, 2013, 45(4):196-205. doi:10.1016/j.domaniend.2013.09.002. [26] Sigala I, Zacharatos P, Toumpanakis D, Michailidou T, Noussia O, Theocharis S, Roussos C, Papapetropoulos A, Vassilakopoulos T. MAPKs and NF-κB differentially regulate cytokine expression in the diaphragm in response to resistive breathing:the role of oxidative stress[J]. Regulatory, Integrative and Comparative Physiology, 2011, 300(5):R1152-R1162. doi:10.1152/ajpregu.00376.2010. [27] Kim S H, Hwang J T, Park H S, Kwon D Y, Kim M S. Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway[J]. Biochemical and Biophysical Research Communications, 2013, 439(1):66-70. doi:10.1016/j.bbrc.2013.08.027. [28] Rom O, Kaisari S, Reznick A Z, Aizenbud D. Peroxynitrite induces degradation of myosin heavy chain via p38 MAPK and muscle-specific E3 ubiquitin ligases in C2 skeletal myotubes[J]. Advances in Experimental Medicine and Biolology, 2015, 832:1-8. doi:10.1007/5584_2014_9. [29] Hamill R M, McBryan J, McGee C, Mullen A M, Sweeney T, Talbot A, Cairns M T, Davey G C. Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork[J]. Meat Science, 2012, 92(4):440-450. doi:10.1016/j.meatsci.2012.05.007. [30] Olarewaju O, Ortiz P A, Chowdhury W Q, Chatterjee I, Kinzy T G. The translation elongation factor eEF1B plays a role in the oxidative stress response pathway[J]. RNA Biology, 2004, 1(2):89-94. doi:10.4161/rna.1.2.1033. [31] Vera M, Pani B, Griffiths L A, Muchardt C, Abbott C M, Singer R H, Nudler E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response[J]. eLife, 2014, 3:e03164. doi:10.7554/eLife.03164. [32] Panasyuk G, Nemazanyy I, Filonenko V, Negrutskii B, El'skaya A V. A2 isoform of mammalian translation factor eEF1A displays increased tyrosine phosphorylation and ability to interact with different signalling molecules[J]. International Journal of Biochemistry & Cell Biology, 2008, 40(1):63-71. doi:10.1016/j.biocel.2007.08.014. [33] Sanges C, Scheuermann C, Zahedi R P, Sickmann A, Lamberti A, Migliaccio N, Baljuls A, Marra M, Zappavigna S, Reinders J, Rapp U, Abbruzzese A, Caraglia M, Arcari P.Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells[J]. Cell Death & Disease, 2012, 3:e276. doi:10.1038/cddis.2012.16. [34] Chang R Y, Wang E. Mouse translation elongation actor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress[J]. Journal of Cellular Biochemistry, 2007, 100(2):267-278. doi:10.1002/jcb.20969. [35] 杜玮,夏俊,李红波,李娜,闫向民,周振勇,张杨,谢伍忠.MSTN在动物育种中的应用研究进展[J].现代农业科技,2015(11):274-276. doi:10.3969/j.issn.1007-5739.2015.11.168. D W, Xia J, Li H B, Li N, Yan X M, Zhou Z Y, Zhang Y, Xie W Z. Research progress on application of MSTN gene in animal breeding[J]. Modern Agricultural Science and Technology, 2015(11):274-276. [36] 潘孝青,刘满昌,杨杰,徐小波,秦枫,李健,宦海琳,李晟,邵乐,张霞,顾洪如.发酵床养殖模式对猪臀肌中MSTN基因表达量影响及其与肉品质间的相关性[J].华北农学报,2013,28(S1):32-35. doi:10.7668/hbnxb.2013.S1.007. Pn X Q, Liu M C, Yang J, Xu X B, Qin F, Li J, Huan H L, Li S, Shao L, Zhang X, Gu H R. Effect of microorganism fermentation bed on expression of MSTN and its expression correlation with pork quality[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(S1):32-35. [37] 赵义龙,黄金凤,张琪智,买尔外提·波拉提,赵金香,矫继峰.肌肉生长抑制素在动物生产中的应用[J].四川畜牧兽医,2017(8):29-31. Zao Y L, Huang J F, Zhang Q Z, Maierwaiti B L T, Zhao J X, Jiao J F. Myostatin application in animal production[J]. Sichuan Animal & Veterinary Sciences, 2017(8):29-31. [38] 杨惠,额尔敦木图,姜建强,包花尔,那仁巴图,刘图雅. 肌肉生长抑制素对骨骼肌作用研究进展[J]. 动物医学进展,2016,37(5):77-82. doi:10.3969/j.issn.1007-5038.2016.05.016. Yng H, Erde M T, Jiang J Q, Bao H E, Naren B T, Liu T Y. Progress on effects of myostatin on skeletal muscle[J]. Progress in Veterinary Medicine, 2016, 37(5):77-82. [39] Schiaffino S, Dyar K A, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy[J]. Febs Journal, 2013, 280(17):4294-4314. doi:10.1111/febs.12253. [40] Cohen T V, Kollias H D, Liu N L, Ward C W, Wagner K R. Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration[J].The Journal of Physiology, 2015, 593(11):2479-2497. doi:10.1113/JP270201. [41] Eldina Y, von Haehling S, Anker S D, Springer J. The role of myostatin in muscle wasting:an overview[J]. Journal of Cachexia Sarcopenia and Muscle, 2011, 2(3):143-151. doi:10.1007/s13539-011-0035-5. [42] Rahimov F, King O D, Warsing L C, Powell R E, Emerson C P, Kunkel L M, Wagner K R. Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor[J]. Physiology Genomics, 2011, 43(8):398-407. doi:10.1152/physiolgenomics.00223.2010. [43] Chen J L, Walton K L, Winbanks C E, Murphy K T, Thomson R E, Makanji Y, Qian H W, Lynch G S, Harrison C A, Gregorevic P. Elevated expression of activins promotes muscle wasting and cachexia[J]. FASEB Journal, 2014, 28(4):1711-1723. doi:10.1096/fj.13-245894. |