[1] |
Egan B, Zierath J R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation[J]. Cell Metab, 2013, 17(2):162-184.doi: 10.1016/j.cmet.2012.12.012.
doi: 10.1016/j.cmet.2012.12.012
pmid: 23395166
|
[2] |
Salvatore D, Simonides W S, Dentice M, Zavacki A M, Larsen P R. Thyroid hormones and skeletal muscle-new insights and potential implications[J]. Nature Reviews Endocrinology, 2014, 10(4):206-214.doi: 10.1038/nrendo.2013.238.
doi: 10.1038/nrendo.2013.238
pmid: 24322650
|
[3] |
Greggio C, Jha P, Kulkarni S S, Lagarrigue S, Broskey N T, Boutant M, Wang X, Conde Alonso S, Ofori E, Auwerx J, Cant C, Amati F. Enhanced respiratory chain super complex formation in response to exercise in human skeletal muscle[J]. Cell Metabolism, 2017, 25(2):301-311.doi: 10.1016/j.cmet.2016.11.004.
doi: S1550-4131(16)30582-4
pmid: 27916530
|
[4] |
Chargé S B P, Rudnicki M A. Cellular and molecular regulation of muscle regeneration[J]. Physiol Rev, 2004, 84(1):209-238.doi: 10.1152/physrev.00019.2003.
doi: 10.1152/physrev.00019.2003
pmid: 14715915
|
[5] |
Gošnak R D, Eržen I, Holcman A, Škorjanc D. Effects of divergent selection for 8-week body weight on postnatal enzyme activity pattern of 3 fiber types in fast muscles of male broilers( Gallus gallus domesticus)[J]. Poultry Science, 2010, 89(12):2651-2659.doi: 10.3382/ps.2010-00641.
doi: 10.3382/ps.2010-00641
URL
|
[6] |
Buckingham M. Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle[J]. PNAS, 2017, 114(23):5830-5837.doi: 10.1073/pnas.1610605114.
doi: 10.1073/pnas.1610605114
pmid: 28584083
|
[7] |
Kristensen L S, Andersen M S, Stagsted L V W, Ebbesen K K, Hansen T B, Kjems J. The biogenesis,biology and characterization of circular RNAs[J]. Nature Reviews Genetics, 2019, 20(11):675-691.doi: 10.1038/s41576-019-0158-7.
doi: 10.1038/s41576-019-0158-7
pmid: 31395983
|
[8] |
Meng X W, Li X, Zhang P J, Wang J J, Zhou Y C, Chen M. Circular RNA:An emerging key player in RNA world[J]. Briefings in Bioinformatics, 2017, 18(4):547-557.doi: 10.1093/bib/bbw045.
doi: 10.1093/bib/bbw045
|
[9] |
Li X, Yang L, Chen L L. The biogenesis,functions,and challenges of circular RNAs[J]. Molecular Cell, 2018, 71(3):428-442.doi: 10.1016/j.molcel.2018.06.034.
doi: 10.1016/j.molcel.2018.06.034
URL
|
[10] |
Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772):901-906.doi: 10.1038/35002607.
doi: 10.1038/35002607
|
[11] |
Yao R W, Wang Y, Chen L L. Cellular functions of long noncoding RNAs[J]. Nature Cell Biology, 2019, 21(5):542-551.doi: 10.1038/s41556-019-0311-8.
doi: 10.1038/s41556-019-0311-8
|
[12] |
Chen L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nature Reviews Molecular Cell Biology, 2020, 21(8):475-490.doi: 10.1038/s41580-020-0243-y.
doi: 10.1038/s41580-020-0243-y
|
[13] |
doi: 10.1080/15476286.2015.1020271
URL
|
[14] |
Hansen T B, Jensen T I, Clausen B H, Bramsen J B, Finsen B, Damgaard C K, Kjems J. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441):384-388.doi: 10.1038/nature11993.
doi: 10.1038/nature11993
|
[15] |
Yang Z G, Awan F M, Du W W, Zeng Y, Lü J J, Wu D, Gupta S, Yang W N, Yang B B. The circular RNA interacts with STAT3,increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function[J]. Mol Ther, 2017, 25(9):2062-2074.doi: 10.1016/j.ymthe.2017.05.022.
doi: 10.1016/j.ymthe.2017.05.022
URL
|
[16] |
Du W W, Fang L, Yang W N, Wu N, Awan F M, Yang Z G, Yang B B. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death and Differentiation, 2017, 24(2):357-370.doi: 10.1038/cdd.2016.133.
doi: 10.1038/cdd.2016.133
pmid: 27886165
|
[17] |
Alexander Wesselhoeft R, Kowalski P S, Parker-Hale F C, Huang Y X, Bisaria N, Anderson D G. RNA circularization diminishes immunogenicity and can extend translation duration in vivo[J]. Molecular Cell, 2019, 74(3):508-520.doi: 10.1016/j.molcel.2019.02.015.
doi: S1097-2765(19)30105-4
pmid: 30902547
|
[18] |
Wei X F, Li H, Yang J M, Hao D, Dong D, Huang Y Z, Lan X Y, Plath M, Lei C Z, Lin F P, Bai Y Y, Chen H. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p[J]. Cell Death & Disease, 2017, 8(10):e3153.doi: 10.1038/cddis.2017.541.
doi: 10.1038/cddis.2017.541
|
[19] |
Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F. The formation of skeletal muscle:From somite to limb[J]. Journal of Anatomy, 2003, 202(1):59-68.doi: 10.1046/j.1469-7580.2003.00139.x.
doi: 10.1046/j.1469-7580.2003.00139.x
pmid: 12587921
|
[20] |
Hocquette J F. Endocrine and metabolic regulation of muscle growth and body composition in cattle[J]. Animal, 2010, 4(11):1797-1809.doi: 10.1017/S1751731110001448.
doi: 10.1017/S1751731110001448
pmid: 22445140
|
[21] |
Yue B L, Wang J, Song C C, Wu J Y, Cao X K, Huang Y Z, Lan X Y, Lei C Z, Huang B Z, Chen H. Biogenesis and ceRNA role of circular RNAs in skeletal muscle myogenesis[J]. The International Journal of Biochemistry & Cell Biology, 2019, 117:105621.doi: 10.1016/j.biocel.2019.105621.
doi: 10.1016/j.biocel.2019.105621
URL
|
[22] |
Salzman J. Circular RNA expression:Its potential regulation and function[J]. Trends in Genetics, 2016, 32(5):309-316.doi: 10.1016/j.tig.2016.03.002.
doi: S0168-9525(16)00032-9
pmid: 27050930
|
[23] |
Zhang Y, Xue W, Li X, Zhang J, Chen S Y, Zhang J L, Yang L, Chen L L. The biogenesis of nascent circular RNAs[J]. Cell Reports, 2016, 15(3):611-624.doi: 10.1016/j.celrep.2016.03.058.
doi: S2211-1247(16)30329-1
pmid: 27068474
|
[24] |
Chen J F, Mandel E M, Thomson J M, Wu Q L, Callis T E, Hammond S M, Conlon F L, Wang D Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature Genetics, 2006, 38(2):228-233.doi: 10.1038/ng1725.
doi: 10.1038/ng1725
|
[25] |
Kim H K, Lee Y S, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation[J]. The Journal of Cell Biology, 2006, 174(5):677-687.doi: 10.1083/jcb.200603008.
doi: 10.1083/jcb.200603008
URL
|
[26] |
Shen X M, Tang J, Jiang R, Wang X G, Yang Z X, Huang Y Z, Lan X Y, Lei C Z, Chen H. CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway[J]. Cell Death & Disease, 2021, 12(2):142.doi: 10.1038/s41419-021-03419-y.
doi: 10.1038/s41419-021-03419-y
|
[27] |
Ru W X, Qi A, Shen X M, Yue B L, Zhang X Y, Wang J, Cao H, Chen H. The circular RNA circCPE regulates myoblast development by sponging miR-138[J]. Journal of Animal Science and Biotechnology, 2021, 12(1):102.
doi: 10.1186/s40104-021-00618-7
pmid: 34493338
|
[28] |
Li H, Yang J M, Wei X F, Song C C, Dong D, Huang Y Z, Lan X Y, Plath M, Lei C Z, Ma Y, Qi X L, Bai Y Y, Chen H. CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J]. Journal of Cellular Physiology, 2018, 233(6):4643-4651.doi: 10.1002/jcp.26230.
doi: 10.1002/jcp.26230
pmid: 29044517
|
[29] |
Ouyang H J, Chen X L, Wang Z J, Yu J, Jia X Z, Li Z H, Luo W, Ali Abdalla B, Jebessa E, Nie Q H, Zhang X Q. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens[J]. DNA Research, 2018, 25(1):71-86.doi: 10.1093/dnares/dsx039.
doi: 10.1093/dnares/dsx039
pmid: 29036326
|
[30] |
Cai B L, Ma M T, Zhou Z, Kong S F, Zhang J, Zhang X Q, Nie Q H. circPTPN4 regulates myogenesis via the miR-499-3p/NAMPT axis[J]. Journal of Animal Science and Biotechnology, 2022, 13(1):2.doi: 10.1186/s40104-021-00664-1.
doi: 10.1186/s40104-021-00664-1
pmid: 35152912
|
[31] |
Yue B L, Yang H Y, Wu J Y, Wang J, Ru W X, Cheng J, Huang Y Z, Lan X Y, Lei C Z, Chen H. circSVIL regulates bovine myoblast development by inhibiting STAT1 phosphorylation[J]. Science China Life Sciences, 2022, 65(2):376-386.doi: 10.1007/S11427-020-1908-2.
doi: 10.1007/S11427-020-1908-2
|