[1] 朱洪德, 朱桂英. 大豆超高产及品 质改良理论与实践研究进展 [J]. 中 国 农学 通 报, 2005, 21 (12): 154 -159.
[2] 盖钧镒. 发展我国大豆遗传改良事业解决国内大豆供给问题[J]. 中国工程科学,2003,5(5):1-6.
[3] 赵团结, 盖钧镒, 李海旺, 等. 超高产大豆育种研究的进展与讨论[J]. 中国农业科学,2006,39(1):29-37.
[4] 王曙明, 孟凡凡, 郑宇宏, 等. 大豆高产育种研究进展[J]. 中国农学通报,2010,26(9):162-166.
[5] 邱丽娟, 王昌 陵, 周 国 安, 等. 大豆分子育种研究进展[J]. 中国农业科学,2007,40(11):2418-2436.
[6] 蒋炳军, 岳岩磊, 王彩洁, 等. 大豆分子育种研究进展[J]. 大豆科学,2012,31(4):662-667.
[7] 黄中文, 赵团 结, 喻德跃, 等. 大豆产量有关性状 QTL的检 测 [J]. 中 国 农 业 科 学, 2009, 42 (12): 4155 -4165.
[8] 王贤智, 周 蓉, 单志慧, 等. 不同种植密度下大豆产量性状的 QTL 分析[J]. 中国油料作物学报, 2009, 31(1):1-8.
[9] 周 蓉, 陈海峰, 王贤智, 等. 大豆产量和产量构成因子及倒伏性的 QTL 分析[J]. 作物学报, 2009, 35(5):821-830.
[10] 刘春燕, 齐照明, 韩冬伟, 等. 大豆产量相关性状的多年多点 QTL 分析[J]. 东北农业大学学报, 2010, 41(11):1-9.
[11] Du W, Yu D, Fu S. Detection of quantitative trait loci foryield and drought tolerance traits in soybean using a re-combinant inbred line population[J]. J Integr Plant Bi-ol,2009,51(9):868-878.
[12] Wang D, Graef G L, Procopiuk A M, et al. Identificationof putative QTL that underlie yield in interspecific soy-bean backcross populations [J ]. Theor Appl Genet,2004,108(3):458-467.
[13] Kim K S, Diers B W, Hyten D L, et al. Identification ofpositive yield QTL alleles from exotic soybean germplasmin two backcross populations [J]. Theor Appl Genet,2012,125(6):1353-1369.
[14] 王贤智, 张晓娟, 周 蓉, 等. 大豆重组自 交系群体荚粒性 状 的 QTL 分析 [J]. 作 物 学 报, 2007, 33 (3 ):441-448.
[15] 赵晋铭, 孟庆长, 张玉梅, 等. 菜用大豆百粒鲜重 QTL定位[J]. 大豆科学,2007,26(6):853-856.
[16] 汪 霞, 徐 宇, 李广军, 等. 大豆百粒重 QTL 定位[J]. 作物学报,2010,36(10):1674-1682.
[17] 高静瑶, 刘春燕, 蒋洪蔚, 等. 多环境下大豆单株荚数性状的 QTL 分析[J]. 中 国 油 料作物学报, 2012, 34(1):1-7.
[18] Sun Y N, Pan J B, Shi X L, et al. Multi-environmentmapping and meta-analysis of 100-seed weight in soy-bean[J]. Molecular Biology Reports, 2012, 39 (10):9435-9443.
[19] Han Y, Li D, Zhu D, et al. QTL analysis of soybean seedweight across multi-genetic backgrounds and environments[J]. Theor Appl Genet,2012,125(4):671-683.
[20] Xu Y, Li H N, Li G J, et al. Mapping quantitative traitloci for seed size traits in soybean (Glycine max L.Merr. ) [J]. Theor Appl Genet, 2011, 122 (3 ): 581 -594.
[21] Palomeque L, Li-Jun L, Li W, et al. QTL in mega-envi-ronments: I. Universal and specific seed yield QTL de-tected in a population derived from a cross of high-yield-ing adapted x high-yielding exotic soybean lines [J].Theor Appl Genet,2009,119(3):417-427.
[22] 吴晓雷, 王永军, 贺 超英, 等. 大豆重要农艺性状的QTL 分析[J]. 遗传学报,2001,28(10):947-955.
[23] 杨 喆, 关荣霞, 王跃强, 等. 大豆遗传图谱的构建和若干农艺性状的 QTL 定位分析[J]. 植物遗传资源学报,2004,5(4):309-314.
[24] 陈庆山, 张忠臣, 刘 春燕, 等. 大豆主要农艺性状的QTL 分析[J]. 中国农业科学,2007,40(1):41-47.
[25] 黄中文, 赵团 结, 喻德跃, 等. 大豆生物量积累、 收获指数及产量间 的 相 关与 QTL 分析 [J]. 作 物 学报,2008,34(6):944-951.
[26] 王 英, 程立锐, 冷建田, 等. 开花后不同光周期条件下大豆农艺性状和品质性状的 QTL 分析[J]. 作物学报,2010,36(7):1092-1099.
[27] 蒋春志, 裴翠娟, 荆慧贤, 等. 大豆品质及农艺性状的QTL 分析[J]. 华北农学报,2011,26(5):127-130.
[28] Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping often agronomic traits on the soybean (Glycine max L.Merr. ) genetic map and their association with EST mark-ers[J]. Theor Appl Genet,2004,108:1131-1139.
[29] Palomeque L, Li-Jun L, Li W, et al. QTL in mega-envi-ronments: II. Agronomic trait QTL co-localized with seedyield QTL detected in a population derived from a crossof high-yielding adapted x high-yielding exotic soybeanlines[J]. Theor Appl Genet,2009,119(3):429-436.
[30] Yoshida A, Sasao M, Yasuno N, et al. TAWAWA1, a regu-lator of rice inflorescence architecture, functions throughthe suppression of meristem phase transition[J]. PNAS,2013,110(2):767-772
[31] Altschul S F, Madden T L, Schffer A A, et al. GappedBLAST and PSI-BLAST: a new generation of protein da-tabase search programs [J]. Nucleic Acids Res, 1997,25:3389-3402.
[32] Kumar S, Dudley J, Nei M, et al. MEGA: a biologist-cen-tric software for evolutionary analysis of DNA and proteinsequences[J]. Brief Bioinform,2008,9:299-306.
[33] Shomura A, Izawa T, Ebana K, et al. Deletion in a geneassociated with grain size increased yields during ricedomestication[J]. Nat Genet, 2008, 40 (8 ): 1023 -1028.
[34] Zhang X, Wang J, Huang J, et al. Rare allele of OsPP-KL1 associated with grain length causes extra-large grainand a significant yield increase in rice[J]. PNAS,2012,109(52):21534-21539.
[35] Terao T, Nagata K, Morino K, et al. A gene controllingthe number of primary rachis branches also controls thevascular bundle formation and hence is responsible toincrease the harvest index and grain yield in rice[J].Theor Appl Genet,2010,120(5):875-893.
[36] Wang J, Nakazaki T, Chen S, et al. Identification andcharacterization of the erect-pose panicle gene EP con-ferring high grain yield in rice (Oryza sativa L. ) [J].Theor Appl Genet,2009,119(1):85-91. |