[1] Hong B. Review on research of lily[J]. Journal of Northeast Forestry University, 2000, 28: 68-71.
[2] Zhang Y, Yuan Y L, Liu Q L. Progress on Variety Improvement and Biotechnology of Lily[J]. Journal of Beijing Forestry University, 2001, 23: 56-60.
[3] Dang B Y, Hu Z M, Chen Z H. Construction of DNA Library of Single Chromatin for lilium regale[J]. Chinese Science Bulletin, 1998, 43 (2): 194-199.
[4] Habe M, Nakano A, Yamagishi M. Genetic analysis of floral anth-Ocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps[J]. Theor Appl Genet, 2002, 105: 1175-1182.
[5] Theissen G. Development of floral organ identy: stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4 (1): 75-85.
[6] Jack T. Relearning our ABCs: new twists on an old model[J]. Trends Plant Sci, 2001, 6 (7): 310-316.
[7] Honna T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature, 2001, 409 (6819): 525-529.
[8] Cone E S, Meyerowitz E M. The war of the whorls: genetic interaction controlling flower development[J]. Nature, 1991, 353: 31-37.
[9] Ma H, Pamphilis C D. The ABCs of floral evolution[J]. Cell, 2000, 101, 5-8.
[10] Theissen G. Development of floral organ identity: stories from the MADS house[J]. Curr. Opin. Biol, 2001, 4: 75-85.
[11] Tunen A J, Eikelboom W, Angenent G C. Floral organogenesis in Tulip. Flow[J]. Newsl, 1993, 16: 33-38.
[12] Kanna A, Akira K, Hiroshi S, et al. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana)[J]. Plant Mol Biol, 2003, 52: 831-841.
[13] Cortines E M, Saedler H, Sommer H. Ternary complex formation between the MADS-box protein SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus[J]. EMBO J, 1999, 18: 5370-5379.
[14] Tzeng T Y, Yang C H. A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana[J]. Plant Cell Physiol, 2001, 42: 1156-1168.
[15] Jack T, Brochman L, Meyerowitz E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens[J]. Cell, 1992, 68: 683-697.
[16] Tzeng TY, Liu H C, Yang C H. The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins[J]. J Biol Chem, 2003.
[17] Tzeng T Y, Chen H Y. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis[J]. Plant Physiol, 2002, 130: 1827-1836.
[18] Chung Y Y, Kim S R, Yanofsky M F, et al. Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene[J]. Plant Mol Biol, 1994, 26 (2): 657 -665.
[19] Ferrario S, Immink R G, Angenent G C, et al. The MADS box gene FBP2 is required for SEPALLATA function in petunia[J]. Ferrario Plant Cell, 2003, 15(4): 914-925.
[20] Pelaz S, Ditta G S, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405(6783): 200-203.
[21] Tzeng T Y, Hsiao C C, Chi P J, et al. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis[J]. Plant Physiol, 2003, 133 (3): 1091-1101.
[22] Moon Y H, Jung J Y, Kang H G, et al. Identification of a rice APETALA3 homologue by yeast two-hybrid screening[J]. Plant Mol Biol, 1999, 40 (1): 167-177.
[23] Winter K U, Weiser C. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization[J]. Mol Biol Evol, 2002, 19: 587-596.
[24] Singh M, Bhalla P L. Isolation and characterization of a flowering plant male gametic cell-specific promoter[J]. FEBS Lett, 2003, 542: 47-52.
[25] Wang C S, Liau Y E, Huang J C, et al. Characterization of a desiccation-related protein in lily pollen during development and stress[J]. Plant Cell Physiol, 1998, 39 (12): 1307-1314.
[26] Huang J C, Lin S M, Wang C S. A pollen-specific and desiccation-associated transcript in Lilium longiflorun during development and stress. Plant Cell Physiol, 2000, 41 (4): 477-485.
[27] Nara T, Saka T, Sawado, T, et al. Isolation of a LIM15/DMC1 homolog from the basidiomycete Coprinus cinereus and its expression in relation to meiotic chromosome pairing[J]. Mol Gen Genet, 1999, 262 (4): 781-789.
[28] Morohashi K, Minami M, Takase H, et al. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression[J]. J Biol Chem, 2003, 278 (23): 20 865 -20 873.
[29] Park S Y, Lord E M. Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion[J]. Plant Mol Biol, 2003, 51: 183-189.
[30] Mori T, Kuroiwa H, Higashiyama T, et al. Identification of higher plant GlsA, a putative morphogenesis factor of gametic cells[J]. Biochem Biophys Res Commun, 2003, 306 (2): 564 -569.
[31] Watad A A, Matsumoto T, Hasegawa P M. Microprojectile bombardment-mediated transformation of Lilium longiflorum[J]. Plant Cell Report, 1998, 17: 262-267.
[32] Nishihara M, Ito M. Expression of the[beta]-Glucuronidase Gene in Pollen of Lily (Lilium longiflorum), Tobacco (Nicotiana tabacum), Nicotiana rustica, and Peony (Paeonia lactiflora) by Particle Bombardment[J]. Plant Physiol, 1993, 102: 357-361.
[33] Simon A, Langeveld M M, Gerrits A, et al. Transformation of lily by agrobacterium[J]. Euphytica, 1995, 85: 97-100.
[34] Hoshi Y, Kondo M, Mori S, et al. Production of transgenic lily plants by agrobacterium-mediated transformation[J]. Plant Cell Rep, 2004, 22 (6): 359-364.
[35] Xiao H., Wang Y, Zhu L H. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference[J]. Plant Mol Biol, 2003, 52: 957-966. |