| [1] |
Carvalho M R, Peñagaricano F, Santos J E P, DeVries T J, McBride B W, Ribeiro E S. Long-term effects of postpartum clinical disease on milk production,reproduction,and culling of dairy cows[J]. Journal of Dairy Science, 2019, 102(12):11701-11717.doi: 10.3168/jds.2019-17025.
|
| [2] |
Potter T J, Guitian J, Fishwick J, Gordon P J, Sheldon I M. Risk factors for clinical endometritis in postpartum dairy cattle[J]. Theriogenology, 2010, 74(1):127-134.doi: 10.1016/j.theriogenology.2010.01.023.
|
| [3] |
Zhang H, Wu Z M, Yang Y P, Shaukat A, Yang J, Guo Y F, Zhang T, Zhu X Y, Qiu J X, Deng G Z, Shi D M. Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling[J]. Journal of Zhejiang(University Science B), 2019, 20(10):816-827.doi: 10.1631/jzus.B1900071.
|
| [4] |
Henderson N C, Rieder F, Wynn T A. Fibrosis:from mechanisms to medicines[J]. Nature, 2020, 587(7835):555-566.doi: 10.1038/s41586-020-2938-9.
|
| [5] |
Alyaseer A A A, de Lima M H S, Braga T T. The role of NLRP3 inflammasome activation in the epithelial to mesenchymal transition process during the fibrosis[J]. Frontiers in Immunology, 2020, 11:883.doi: 10.3389/fimmu.2020.00883.
|
| [6] |
Jayachandran J, Srinivasan H, Mani K P. Molecular mechanism involved in epithelial to mesenchymal transition[J]. Archives of Biochemistry and Biophysics, 2021, 710:108984.doi: 10.1016/j.abb.2021.108984.
|
| [7] |
Kasai H, Allen J T, Mason R M, Kamimura T, Zhang Z. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition(EMT)[J]. Respiratory Research, 2005, 6(1):56.doi: 10.1186/1465-9921-6-56.
|
| [8] |
Li J, Yang B, Zhou Q, Wu Y Z, Shang D, Guo Y, Song Z F, Zheng Q C, Xiong J. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition[J]. Carcinogenesis, 2013, 34(6):1343-1351.doi: 10.1093/carcin/bgt063.
|
| [9] |
Stone R C, Pastar I, Ojeh N, Chen V, Liu S, Garzon K I, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis[J]. Cell and Tissue Research, 2016, 365(3):495-506.doi: 10.1007/s00441-016-2464-0.
|
| [10] |
Meijer A J, Codogno P. Autophagy:regulation and role in disease[J]. Critical Reviewsin Clinical Laboratory Sciences, 2009, 46(4):210-240.doi: 10.1080/10408360903044068.
|
| [11] |
Wang Y, Ping Z L, Gao H X, Liu Z H, Xu Q, Jiang X W, Yu W H. LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis[J]. Autophagy, 2024, 20(5):1114-1133.doi: 10.1080/15548627.2023.2287930.
|
| [12] |
Cong L H, Li T, Wang H, Wu Y N, Wang S P, Zhao Y Y, Zhang G Q, Duan J. IL-17A-producing T cells exacerbate fine particulate matter-induced lung inflammation and fibrosis by inhibiting PI3K/Akt/mTOR-mediated autophagy[J]. Journal of Cellular and Molecular Medicine, 2020, 24(15):8532-8544.doi: 10.1111/jcmm.15475.
|
| [13] |
Ruby M, Gifford C C, Pandey R, Raj V S, Sabbisetti V S, Ajay A K. Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-β1 in autophagy and kidney fibrosis[J]. Cells, 2023, 12(3):412.doi: 10.3390/cells12030412.
|
| [14] |
He X, Chen S, Li C, Ban J Q, Wei Y G, He Y Y, Liu F W, Chen Y, Chen J. Trehalose alleviates crystalline silica-induced pulmonary fibrosis via activation of the TFEB-mediated autophagy-lysosomal system in alveolar macrophages[J]. Cells, 2020, 9(1):122.doi: 10.3390/cells9010122.
|
| [15] |
Krempaska K, Barnowski S, Gavini J, Hobi N, Ebener S, Simillion C, Stokes A, Schliep R, Knudsen L, Geiser T K, Funke-Chambour M. Azithromycin has enhanced effects on lung fibroblasts from idiopathic pulmonary fibrosis(IPF)patients compared to controls[J]. Respiratory Research, 2020, 21(1):25.doi: 10.1186/s12931-020-1275-8.
|
| [16] |
Hill C, Wang Y H. Autophagy in pulmonary fibrosis:friend or foe?[J]. Genes & Diseases, 2022, 9(6):1594-1607.doi: 10.1016/j.gendis.2021.09.008.
|
| [17] |
Wei C, Pan Y B, Zhang Y L, Dai Y D, Jiang L L, Shi L B, Yang W J, Xu S Q, Zhang Y Y, Xu W Z, Zhang Y L, Lin X N, Zhang S Y. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells[J]. Cell Death & Disease, 2020, 11(9):755.doi: 10.1038/s41419-020-02956-2.
|
| [18] |
Sun X J, Liu Y, Li C, Wang X T, Zhu R Y, Liu C Y, Liu H X, Wang L L, Ma R F, Fu M, Zhang D W, Li Y. Recent advances of curcumin in the prevention and treatment of renal fibrosis[J]. BioMed Research International, 2017, 2017:2418671.doi: 10.1155/2017/2418671.
|
| [19] |
Tyagi N, Singh D K, Dash D, Singh R. Curcumin modulates paraquat-induced epithelial to mesenchymal transition by regulating transforming growth factor-β(TGF-β)in A549 cells[J]. Inflammation, 2019, 42(4):1441-1455.doi: 10.1007/s10753-019-01006-0.
|
| [20] |
Wang Z H, Chen Z, Li B S, Zhang B, Du Y C, Liu Y H, He Y, Chen X. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways[J]. Pharmaceutical Biology, 2020, 58(1):828-837.doi: 10.1080/13880209.2020.1809462.
|
| [21] |
Koyama T, Omori R, Koyama K, Matsui Y, Sugimoto M. Optimization of diagnostic methods and criteria of endometritis for various postpartum days to evaluate infertility in dairy cows[J]. Theriogenology, 2018, 119:225-232.doi: 10.1016/j.theriogenology.2018.07.002.
|
| [22] |
Gilbert R O, Shin S T, Guard C L, Erb H N, Frajblat M. Prevalence of endometritis and its effects on reproductive performance of dairy cows[J]. Theriogenology, 2005, 64(9):1879-1888.doi: 10.1016/j.theriogenology.2005.04.022.
|
| [23] |
Fu K Q, Shao L Z, Mei L, Li H T, Feng Y N, Tian W R, Huan Y J, Cao R F. Tanshinone ⅡA inhibits the lipopolysaccharide-induced epithelial-mesenchymal transition and protects bovine endometrial epithelial cells from pyolysin-induced damage by modulating the NF-κB/Snail2 signaling pathway[J]. Theriogenology, 2021, 176:217-224.doi: 10.1016/j.theriogenology.2021.10.001.
|
| [24] |
Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis:epithelial-mesenchymal transition[J]. Human Pathology, 2009, 40(10):1365-1376.doi: 10.1016/j.humpath.2009.02.020.
|
| [25] |
Leask A, Abraham D J. TGF-β signaling and the fibrotic response[J]. The FASEB Journal, 2004, 18(7):816-827.doi: 10.1096/fj.03-1273rev.
|
| [26] |
Midgley A C, Rogers M, Hallett M B, Clayton A, Bowen T, Phillips A O, Steadman R. Transforming growth factor-β1(TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan(HA)-facilitated epidermal growth factor receptor(EGFR)and CD 44 co-localization in lipid rafts[J]. Journal of Biological Chemistry, 2013, 288(21):14824-14838.doi: 10.1074/jbc.M113.451336.
|
| [27] |
Kim B N, Ahn D H, Kang N, Yeo C D, Kim Y K, Lee K Y, Kim T J, Lee S H, Park M S, Yim H W, Park J Y, Park C K, Kim S J. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer[J]. Scientific Reports, 2020, 10(1):10597.doi: 10.1038/s41598-020-67325-7.
|
| [28] |
Zhang C Y, Zhu X P, Hua Y F, Zhao Q, Wang K J, Zhen L X, Wang G X, Lyu J H, Luo A, Cho W C, Lin X, Yu Z R. YY1 mediates TGF-β1-induced EMT and pro-fibrogenesis in alveolar epithelial cells[J]. Respiratory Research, 2019, 20(1):249.doi: 10.1186/s12931-019-1223-7.
|
| [29] |
Yoshikawa M, Hishikawa K, Marumo T, Fujita T. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-β in human renal epithelial cells[J]. Journal of the American Society of Nephrology, 2007, 18(1):58-65.doi: 10.1681/ASN.2005111187.
|
| [30] |
Fang Z H, Wang Q, Duan H W, Sheng X H, Qi X L, Xing K, Liu B Y, Chang D, Guo Y, Wang X G, Xiao L F. 17β-Estradiol mediates TGFBR3/Smad2/3 signaling to attenuate the fibrosis of TGF-β1-induced bovine endometrial epithelial cells via GPER[J]. Journal of Cellular Physiology, 2024, 239(1):166-179.doi: 10.1002/jcp.31153.
|
| [31] |
Sharma C, Rokana N, Chandra M, Singh B P, Gulhane R D, Gill J P S, Ray P, Puniya A K, Panwar H. Antimicrobial resistance:its surveillance,impact,and alternative management strategies in dairy animals[J]. Frontiers in Veterinary Science, 2018, 4:237.doi: 10.3389/fvets.2017.00237.
|
| [32] |
Sharma R A, Gescher A J, Steward W P. Curcumin:the story so far[J]. European Journal of Cancer 2005, 41(13):1955-1968.doi: 10.1016/j.ejca.2005.05.009.
|
| [33] |
Giordano A, Tommonaro G. Curcumin and cancer[J]. Nutrients, 2019, 11(10):2376.doi: 10.3390/nu11102376.
|
| [34] |
Zhou X J, Zhang J, Xu C G, Wang W. Curcumin ameliorates renal fibrosis by inhibiting local fibroblast proliferation and extracellular matrix deposition[J]. Journal of Pharmacological Sciences, 2014, 126(4):344-350.doi: 10.1254/jphs.14173FP.
|
| [35] |
Hernández-Aquino E, Quezada-Ramírez M A, Silva-Olivares A, Ramos-Tovar E, Flores-Beltrán R E, Segovia J, Shibayama M, Muriel P. Curcumin downregulates Smad pathways and reduces hepatic stellate cells activation in experimental fibrosis[J]. Annals of Hepatology, 2020, 19(5):497-506.doi: 10.1016/j.aohep.2020.05.006.
|
| [36] |
Li R, Wang Y M, Liu Y J, Chen Q J, Fu W C, Wang H, Cai H, Peng W, Zhang X M. Curcumin inhibits transforming growth factor-β1-induced EMT via PPARγ pathway,not Smad pathway in renal tubular epithelial cells[J]. PLoS One, 2013, 8(3):e58848.doi: 10.1371/journal.pone.0058848.
|
| [37] |
Fan S Q, Wu K K, Zhao M P, Zhu E P, Ma S M, Chen Y M, Ding H X, Yi L, Zhao M Q, Chen J D. The role of autophagy and autophagy receptor NDP52 in microbial infections[J]. International Journal of Molecular Sciences, 2020, 21(6):2008.doi: 10.3390/ijms21062008.
|
| [38] |
Kong D S, Zhang Z L, Chen L P, Huang W F, Zhang F, Wang L, Wang Y, Cao P, Zheng S Z. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy[J]. Redox Biology, 2020, 36:101600.doi: 10.1016/j.redox.2020.101600.
|
| [39] |
Sun C B, Ying Y, Wu Q Y, Liu Y, Yu J Z, Xing H J, Zhang S Q, Hou J, Wen J, Liu F Y, Yan J Y, Yuan J L, Yang Z S. The main active components of Curcuma zedoaria reduces collagen deposition in human lung fibroblast via autophagy[J]. Molecular Immunology, 2020, 124:109-116.doi: 10.1016/j.molimm.2020.05.017.
|